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ABSTRACT

This research addresses improvements to the detection and characterization of active wildfires in

Alaska with satellite-based sensors.

The VIIRS I-band Fire Detection Algorithm for High Latitudes (VIFDAHL) was developed and

evaluated against existing active fire products from the Visible Infrared Imaging Radiometer Suite

(VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). This new algorithm

is based on VIIRS 375 m spatial resolution imagery and was tuned using fires in Alaska’s boreal

forest. It provides improved fire detection of low-intensity fires, especially during daytime and at

sensor zenith angles smaller than approximately 50° off nadir. Low-intensity active fires, which

represent residual combustion present after the passage of a high-intensity fire front, are not very

well detected by existing active fire products.

A second topic was fire remote sensing with ~30 m resolution imaging spectrometer (or hy-

perspectral instrument), the Hyperion sensor on NASA’s EO-1 spacecraft, which was in use from

2000 to 2016. Hyperion had a much higher spectral resolution than VIIRS or MODIS, but no

repeat imagery of the same active fire was available in Alaska. The investigation relied on ab-

sorption and emission features in the radiance spectra acquired at every pixel location. Three

fire detection methods were evaluated using archived Hyperion data from three fires in interior

Alaska from 2004 and 2009: A version of the Hyperspectral Fire Detection Algorithm (HFDI) pro-

duced excellent active fire maps; an approach that relies on a shortwave infrared carbon dioxide

absorption feature and associated Continuum Interpolated Band Ratio (CO2 CIBR) proved to be

useful, but was affected by sensor noise and clouds; finally, a potassium emission feature from

biomass burning was not detectable in the Hyperion data.

Fire temperatures were determined using the Hyperion shortwave infrared spectra between

1400 nm and 2400 nm. The temperatures of active fire, the corresponding partial pixel areas, and

the pixel areas occupied by unburned and already-burned vegetation, respectively, were modeled

within each fire pixel. A model with two reflected background components and two tempera-
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ture endmembers, applied to the same three study scenes, yielded an excellent fit to Hyperion

spectral radiance data. Fire temperatures ranged from approximately 500-600 K to approximately

800-900 K. The retrieved lower fire temperatures are within the range of smoldering combustion;

high-temperature values are limited by Hyperion’s saturation behavior. High-temperature fire

occupying 0.2% of a pixel (2m2) was detectable. Sub-pixel fire area and temperature were also re-

trieved using VIIRS 750 m (M-band) data, with comparable results. Uncertainties were evaluated

using a Monte Carlo simulation.

This work offers insight into the sensitivity of fire detection products to time of day (largely

due to overpass timing), spatial distribution over the study area (largely due to orbital properties)

and sensor zenith angle. The results are relevant for sensor and algorithm design regarding the

use of new multi- and hyperspectral sensors for fire science in the northern high latitudes. Data

products resulting from this researchwere designed to be suitable for supporting firemanagement

with an emphasis on real-time applications and also address less time-sensitive questions such

as retrievals of fire temperature and time series of fire evolution.
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Chapter 1

GENERAL INTRODUCTION

1.1 Fires in the boreal forest

Wildfire is a major natural hazard and an important factor in landscape change and disturbance in

many regions of the earth, wherever vegetation is available to serve as fuel. In the boreal forests

of the circum-polar North wildfires are an essential ingredient for ecological renewal and change.

These regions play a vital role in the earth system: Arctic and sub-Arctic ecosystems constitute

approximately 22 % of the earth’s land mass (Chapin et al. 2000) and represent one third of the

global forested area (Dixon et al. 1994). Their soils are characterized by an accumulation of fine

organic litter referred to as duff (e.g. Kasischke et al. 2005), which is decomposing only slowly

due to the low average temperatures and the presence of continuous or discontinuous permafrost

soils.

Scientific interest in the study of fire in the boreal zone is in part driven by the sensitivity of

these regions to climate warming (Chapin et al. 2004; Collins et al. 2013; Kasischke and Turetsky

2006), and in part by the needs of fire management agencies, which have to operate over a vast

area generally inaccessible by road. Other than selected locations targeted by timber harvest or

fuel treatment for wildfire risk reduction, these are sparsely inhabited spaces with human activity

concentrated in few locations. Large boreal wildfires affect atmospheric composition and air

quality (Andreae 1991; Grell et al. 2011) and are a threat to critical infrastructure. Satellite-based

approaches are therefore of great relevance for both fire science and decision support.

Important differences exist in the fire regimes between sub-regions of the global boreal zone.

The term fire regime is used in the literature in a variety of ways to describe frequency and sea-

sonality of fire, as well as the distribution of fire attributes such as: burned area per fire event,

flaming versus smoldering combustion, crown fires versus surface fires, fire temperatures, power

output, flame lengths, fire front propagation speeds etc. (e.g. Johnstone et al. 2010; Kasischke and
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Figure 1.1: Alaska wildfire perimeters, 1998–2017 (source: Alaska Large Fires Database/Alaska Fire Service).
The inset shows the yearly cumulative area enclosed by the fire perimeters.

Turetsky 2006; Rein et al. 2008). Highly flammable understory and mosses favor ignition and fire

spread (van Cleve et al. 1991). In the boreal forests of Alaska, in particular the areas dominated

by black spruce (Picea mariana) and the parts of Canada covered in spruce and lodgepole pine

(Pinus contorta), large stand-replacing crown fires are particularly common (Chapin et al. 2004).

In contrast, the mature Eurasian boreal forest has a higher prevalence of more fire-resistant conif-
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erous species such as Scots pine (Pinus sylvestris) and Siberian larch (Larix siberica), so surface

fires are more common there (Soja et al. 2007). Such differences matter for the detection and

characterization of fires using a satellite-borne sensor.

This dissertation focuses on fires in the boreal forest of Alaska, where they are a common,

recurring phenomenon: In any given decade, a large part of the forested area of interior Alaska is

affected by wildfire; however, the total burned area varies greatly from year to year (Figure 1.1).

The largest fires, and therefore the area burned, are driven by ignition by lightning strikes (Dissing

and Verbyla 2003; Kasischke et al. 2010; Veraverbeke et al. 2017), given suitable hot and dry

conditions that sustain fire spread. In Alaska fires in regions dominated by black spruce, a large

part (50-80%) of the carbon emissions stem from the surface and sub-surface layers (Kasischke

and Hoy 2012; Randerson et al. 2006).

1.2 Satellite remote sensing of active fires

Satellite remote sensing of active fires makes use of the infrared radiation emitted by biomass

combustion. Sensors detect the fire’s emitted electromagnetic radiation in the shortwave (SWIR,

1100–2500 nm), mid- (MIR, 3–5 µm) and thermal infrared (TIR, 8–15 µm) regions of the electro-

magnetic spectrum to identify image pixels whose footprint on the earth surface contains active

combustion. Operational fire detectionwith sensors on polar-orbiting satellites was implemented

since the 1980s (e.g. Ichoku et al. 2012) and has been in widespread use by fire managers at least

since the well-validated global fire products from NASA’s Moderate Resolution Imaging Spectro-

radiometer (MODIS) became easily available to a wide user community (Giglio et al. 2003, 2016;

Justice et al. 2010; Kaufman et al. 1998).

Geostationary satellites, such as for example the Geostationary Operational Environmental

Satellites (GOES) of the United States National Oceanic andAtmospheric Administration (NOAA),

also play an important role in active fire remote sensing. Several algorithms, both for active fire

monitoring (Menzel and Prins 1996; Prins et al. 2001) and early fire detection (Koltunov et al. 2016),

are in use. In high latitudes, however, geometric effects lead to pixel distortion and lower the

spatial resolution of a geostationary earth-observing system. On the other hand, polar-orbiting
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satellites have advantages in the high latitudes as their orbits converge towards the poles, and

therefore the imaging frequency for a location on the earth surface is increased. Therefore, this

work only considers sensors on polar-orbiting platforms.

MODIS is a multispectral sensor, which means that it acquires imagery in a number of in-

dividually selected, carefully placed spectral bands. Design criteria are based on the targeted

scientific applications, and sensitivity and bandwidth vary from band to band. A different class

of sensors are imaging spectrometers, also called hyperspectral sensors. They offer a much in-

creased spectral resolution, typically acquiring reflectance or radiance spectra across the visible

and near-infrared (VNIR, up to 1100 nm) and shortwave infrared (1100 nm to 2500 nm) regions of

the electromagnetic spectrum at every imaging pixel. They essentially provide a very large data

volume, but over a more restricted spectral region, than multispectral sensors that specialize in

fire detection. Fire detection and characterization with this type of space-borne sensor in the bo-

real forest has not, up to now, been explored in depth by the research community. Furthermore,

ongoing and planned satellite missions with hyperspectral sensors will open up opportunities to

apply such approaches to fire remote sensing. This study explores the potential of satellite-borne

hyperspectral remote sensing using the Hyperion sensor on NASA’s EO-1 satellite, which has a

spatial resolution of 30 m (Middleton et al. 2013; Ungar et al. 2003).

A characteristic feature of sensors on polar-orbiting satellites is the trade-off between tem-

poral and spatial resolution: Given the constraints on their orbital properties, an increase of the

number of overpasses that image a given location is achieved by widening the image swath and

thereby lowering the spatial resolution. The imagery used in this work therefore falls in one of

two classes: Those with a spatial resolution of the order of 1 km (values range from 375 m at nadir

(Cao et al. 2014), to approximately 2 × 5 km (Lee et al. 2006)) and those whose ground-sampling

distance (GSD) is approximately 30 m. Coarser-resolution imagery of a location is available mul-

tiple times every day in the high latitudes, compared to every 2-3 weeks for the higher-resolution

class. From the coarser-resolution class, we used MODIS as well as the Visible Infrared Imaging

Radiometer Suite (VIIRS), which was launched on October 28, 2011, and is operated under a joint

program by both NOAA and NASA; as for ~30 m imagery, we rely on Hyperion as well as data

from the TM, ETM+ and OLI/TIRS sensors carried on Landsat 5, 7 and 8, respectively.

4



Beyond fire detection, this work addresses fire characterization. One of the most fundamental

characteristics of a fire is the temperature at which it burns. Active fire products, however, often

focus on a different variable, fire-radiative power (FRP), which is the rate of emission of radiative

energy (Wooster et al. 2005). There are valid reasons for this choice: First, the radiance mea-

sured at the sensor reflects the rate of energy released on the ground (minus atmospheric losses),

whereas the concept of fire temperature refers to only the (often very small) portion of the pixel

that contains active fire. Second, scientific questions relevant to climate and atmospheric sci-

ence, such as carbon consumption or trace gas emissions, are directly linked to the consumption

of biomass and therefore energy released by the fire (ibid.). On the other hand, we can argue in fa-

vor of making fire temperature the object of study: FRP is determined via temperature retrievals

anyway, sometimes using empirical relations between the two quantities in the data provided

by a given sensor (Kaufman et al. 1998); and whether we study FRP or fire temperature, an ac-

tive fire scene is always an instantaneous snapshot of processes that develop and change over

time, so FRP retrievals in the best case only provide instantaneous rates of carbon consumption.

Moreover, fire temperature opens its own avenues for future research: temperature is one way

to delineate flaming from smoldering combustion, which is a crucial distinction that drives the

nature and quantity of fire emissions (Andreae 1991; French et al. 2002). It is temperature that

governs fire-related processes such as drying, pyrolysis, or ignition (Rein et al. 2008).

1.3 Objectives and structure of this dissertation

The goal of this dissertation is to advance the detection and characterization of fires in Alaska’s

boreal forest using new or improved remote sensing techniques. We use data from VIIRS on the

Suomi-NPP satellite and Hyperion for fire detection and active fire temperature retrieval. For

purposes of validation we rely, where appropriate, on Landsat data and published Landsat-based

fire detection and landcover classification algorithms.

In Chapter 2 the performance of existing global active fire detection products from MODIS

and VIIRS is evaluated using data from the Alaska fire seasons of 2015 and 2016, and a new

fire detection algorithm is introduced. The VIIRS Fire Detection Algorithm for High Latitudes
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(VIFDAHL) is described. It is based on the imaging bands of the VIIRS sensor (I-bands, 375 m

resolution at nadir). Landsat 8 data is used for validation.

Chapter 3 presents the first study of North American boreal forest fires using satellite-borne

imaging spectroscopy with NASA’s Hyperion sensor. Three fire detection methods are evaluated

and compared, and sub-pixel active fire temperatures and fractional areas of fire and background

components are determined using a linear spectral mixture model.

Chapter 4 explores a similar approach to temperature retrieval, the well-documented Dozier

method (Dozier 1981), but used with VIIRS imagery acquired over Alaska to retrieve active fire

temperatures in mid- and thermal infrared multispectral data. The sensitivity of fire detection to

sensor angle and uncertainty considerations are addressed.

In Chapter 5, the results are summarized.

Finally, the Appendix offers a related investigation, the topic of which is fire hazard mapping

in coal seam fires. Fire hazard areas were associated with persistent thermal anomalies in Landsat

imagery acquired over the coal-bearing regions of interior Alaska, where coal seam fires are a

recurring phenomenon and sometimes ignite forest fires.

Chapters 2, 3, 4, and the appendix are multi-authored articles. In chapters 2, 3, and 4, I con-

tributed to the research design, collected the data, carried out the data analysis, generated the

visualizations, and produced the initial manuscript. In the appendix, I contributed to the research

design, collected the data, carried out most of the data analysis, generated the visualizations, and

contributed to the writing.
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Chapter 2

DETECTING HIGH AND LOW-INTENSITY FIRES IN ALASKA USING VIIRS I-BAND DATA:

AN IMPROVED OPERATIONAL APPROACH FOR HIGH LATITUDES1

Abstract

Fire products from Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible In-

frared Imaging Radiometer Suite (VIIRS) imagery provide timely information for wildfire detec-

tion, monitoring, and characterization at the global scale. However, in Alaskan boreal forest fires,

their lower effectiveness in detecting residual fire once the high-intensity fire front has passed

limits their practical use for regional or local firemanagement decisions. Using data acquired dur-

ing Alaska’s 2016 fire season, we analyzed the performance of the MODIS-based MOD14/MYD14,

and the more recent VIIRS I-band active fire products. A comparison with the fire perimeter and

properties data published by the Alaska Interagency Coordination Center (AICC) shows that

both MODIS and VIIRS fire products successfully detect all fires larger than approximately 200–

300 ha. For fires smaller than this threshold, the VIIRS I-band product offers higher detection

likelihood. To map burn areas containing both low- and high-intensity active fire, we developed

the VIIRS I-band Fire Detection Algorithm for High Latitudes (VIFDAHL). We apply this algo-

rithm to regions of known Alaskan boreal forest fires and validate it using events mapped by fire

management agencies and detected on closely-timed Landsat imagery. We find that for Alaska,

an example of a high-latitude region, VIFDAHL more accurately captures the fire spread, can

differentiate well between low- and high-intensity fires, and can detect 30–90% more fire pixels

compared to the MODIS and VIIRS global fire products.

1Article published as: Waigl, C. F., Stuefer, M., Prakash, A., & Ichoku, C. (2017). Remote Sensing of
Environment, 199, 389–400. https://doi.org/10.1016/j.rse.2017.07.003
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2.1 Introduction

Operational fire detection products from satellite-borne visible and infrared sensors have been

used to track wildfire activity and inform fire managers of fire risk and hazard since they first

became available in the 1980s (Ichoku et al. 2012). In the northern high-latitude regions such

as Alaska, where fire affects remote, sparsely populated areas, site access or fire suppression

decisions are associated with significant complexity and cost. In such areas, satellite remote

sensing frequently offers the only avenue to obtain near real-time data for decision support.

In Alaska’s vast boreal forest, wildfires have been reported to be increasing in frequency,

severity, and extent, in part due to a rapidly changing climate regime (Collins et al. 2013; Ka-

sischke and Turetsky 2006; Soja et al. 2007). Between 1960 and 2000, the area annually affected

by fire increased from an average of 400,000 ha per year to approx. 767,000 ha per year (Kasischke

et al. 2010). In the Alaskan boreal forest, stands of black spruce (Picea mariana), the dominant

coniferous species, undergo a complete stand-replacing fire roughly every 50–500 years (ibid.).

Due to the slow progress of decomposition in the sub-arctic climate a deep layer of fine organic

material covers the forest floor. The combustion of this duff layer accounts for more than half

of the fire-related carbon consumption and emissions in boreal forest areas (Kasischke and Hoy

2012; Kasischke et al. 2005; Randerson et al. 2006); the degree to which it is consumed impacts

carbon storage (Genet et al. 2013) and the succession of species during post-fire recovery (John-

stone et al. 2010) . Rapid changes in the frequency and characteristics of Alaskan wildfires there-

fore affect the atmospheric composition at local (Andreae and Merlet 2001; Grell et al. 2011) and

hemispheric scales (Pfister et al. 2006, 2005, 2008). The investigation of some of these processes

requires observational data to be available in near real time.

In 2015 Alaska witnessed an extreme fire season, with the total area burned exceeding 2.5

million ha (Roman 2015), which is six times the long-term annual average. Since the start of the

Alaska Large Fires Database in 1940 (Kasischke et al. 2002) the area burned in 2015 was only

exceeded during the 2004 fire season. 2015 was followed by a below-average fire season in 2016

(200,000 ha burned). These two recent fire seasons provide an excellent opportunity to investigate

a variety of fires that are representative for the fire regime in the Alaskan boreal forest.
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The goals of this study are to use 2015 and 2016 data as a test case:

• To investigate the performance of the principal fire products currently available for oper-

ational use in the detection and mapping of Alaskan wildfires, using fire properties and

perimeter data provided by fire management agencies as reference data.

• To design and evaluate a customized fire detection algorithm suitable for Alaska and to

compare its performance to the global product as well as validate it with higher- resolution

data. We first provide a brief review of existing global fire detection products, introduce

four study sites, and evaluate selected global fire products with ground truth data available

from fire management agencies. We then present the VIIRS I-band Fire Detection Algo-

rithm for High Latitudes (VIFDAHL), validate it using higher-resolution remote sensing

data, and compare its performance with the previously evaluated global fire products.

2.2 Global active fire products: a brief review

Most global operational fire products make use of two infrared (IR) bands: one in the mid-IR

(centered at a wavelength of ~4 μm), which corresponds to the peak of radiant emittance caused

by a flaming wildfire at ~1000 K; and a second band in the thermal IR (at ~11–12 μm), which is

sensitive to background radiation emitted by the Earth’s surface. Whenever a pixel’s footprint

covers the location of a wildfire, the mid-IR radiance is elevated with respect to the thermal

IR radiance. Fire detection algorithms use thresholds on both the value of the mid-IR emissive

signal and the difference between the mid- and thermal IR brightness temperatures. Algorithm-

dependent checks serve to minimize errors of commission (“false alarms”) and errors of omission

(“missing fire pixels”).

TheWildfire Automated Biomass Burning Algorithm (WF-ABBA), developed for fire retrieval

from Geostationary Operational Environmental Satellite (GOES) and other geostationary satel-

lites operated by European, Japanese and Korean agencies, was used to generate an operational

fire detection product with a spatial resolution of 4 km at the equator as early as 1994 (Menzel and

Prins 1996; Prins and Menzel 1994; Prins and Schmidt 2001). However, it was only in 2002 that a

WF-ABBA based daily fire product was available operationally for the user community through
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NOAA’s National Environmental Satellite, Data, and Information Service (NESDIS). Sub-pixel

analysis is used to retrieve the temperature and the fractional areas of fires in individual pixels

(Dozier 1981; Matson and Dozier 1981).

A family of fire detection algorithms was also developed for the Advanced Very High Resolu-

tion Radiometer (AVHRR) on NOAA’s polar-orbiting satellites (Giglio et al. 1999; Li et al. 2000a,b).

The Fire Identification, Mapping and Monitoring Algorithm (FIMMA), which is available at NES-

DIS, is specifically aimed at the detection of forest fires, as it relies on land cover data among its

inputs to complement the AVHRR bands 2 (0.9 μm), 3b (3.7 μm), 4 (10.8 μm) and 5 (12 μm) that

are used.

Following the launch of the National Aeronautics and Space Administration’s (NASA’s) Earth

Observing System (EOS) suite of satellites beginning in 1999, the Moderate Resolution Imaging

Spectroradiometer (MODIS) sensors offered new opportunities for advancing fire detection and

characterization. MODIS data are used to generate the currently best-validated active fire de-

tection products, MOD14 and MYD14 (from the Terra and Aqua spacecraft, respectively), at a

spatial resolution of 1 km at nadir (Justice et al. 2002; Kaufman et al. 1998). Originally described

by Kaufman et al. (1998), the MODIS operational algorithm version has since evolved from col-

lections 2, 3, 4, and 5 (Giglio et al. 2003) up to the current collection 6 (Giglio et al. 2016). MODIS

acquires data in 36 spectral bands, ranging from visible and near infrared (VNIR) to shortwave

infrared (SWIR), mid-infrared (MIR) and thermal infrared (TIR). 29 of the 36 spectral bands are

acquired at a ground-sampling distance (GSD) of 1 km at nadir. Off-nadir, pixel footprints grow

to approximately 2 × 5 km at the swath edge. Active fire detection makes use of two channels

centered at 3.96 μm (band 21 and themore sensitive band 22, which saturates at a lower brightness

temperature) and the TIR channel 31, which is centered at 11 μm.

The Visible Infrared Imaging Radiometer Suite (VIIRS) on the National Oceanic and Atmo-

spheric Administration’s (NOAA’s) Suomi National Polar-orbiting Partnership (Suomi NPP) plat-

form (Cao et al. 2014) was launched in late 2011 under the Joint Polar Satellite System (JPSS),

which is a joint program managed by both NOAA and NASA. A fire detection algorithm based

on themoderate-resolution (“M”) bands (GSD 750m at nadir) uses the dual-gain bandM13 (3.973–
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4.128 μm, with saturation temperatures of 343 K and 634 K) and the single-gain bandM15 (10.263–

11.263 μm) (Csiszar et al. 2014). A second algorithm, devised by Schroeder et al. (2014) uses the

bands optimized for imaging (“I” bands, GSD 375 m at nadir), specifically I4 (centered at 3.74 μm)

and I5 (centered at 10.45 μm). Polivka et al. (2016) have proposed the Firelight Detection Algo-

rithm (FILDA), which combines VIIRS M-band infrared data with the visible light signal from the

near-constant contrast Day-Night Band (DNB) (Liang et al. 2014) for improved night-time fire

detection.

Csiszar et al. (2006) validated the MODIS active fire products using simultaneous higher-

resolution data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) on the Terra platform for wildfires in the Eurasian boreal forest in Siberia. They found

that, due to the thick smoke observed in Siberian boreal forest fires, the footprint of a 1 × 2 km

MODIS pixel needs to contain one third more 30 m ASTER fire detections than required for fires

in the Brazilian Amazon (60 vs. 45) to achieve a probability of 50% for the pixel to be flagged

as “fire”. Schroeder et al. (2008) validated WF-ABBA and the MODIS products using ASTER and

Landsat ETM+ over Amazonia. A different approach to validation consists in the comparison

of the output from newer products to existing ones. Thus, Schroeder et al. (2014) compared the

new VIIRS 375 m I-band global product to MOD14/MYD14 and to the VIIRS M-band product, by

sampling 12 zones across the globe for one month (August 2013). Two of these zones are in the

boreal region, one over Canada, one over Russia. For these zones, errors of commission do not

exceed 0.04% (ibid.). Direct comparison with MODIS as well as higher-resolution sensors was

carried out for fire events in California, Brazil, and Australia, but no locations in the boreal forest

were selected for detailed investigation.

2.3 Wildfire study areas

In this study we use four selected study sites (Fig. 2.1) to generate and validate a new Alaska-

specific VIIRS I-band based fire product. They represent distinct situations inwhich firewas active

during the 2015 or 2016 Alaska fire seasons. For these sites, cloud-free Landsat 8 Operational

Land Imager (OLI) data that was closely timed with one of the VIIRS overpasses in our dataset

was available.
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Figure 2.1: Location of the four 2015 and 2016 wildfire study areas within Alaska: Willow (Sockeye fire), Eagle
(Seventymile and Trout fire), and two areas within the northern Yukon-Koyukuk basin which saw multiple
large-scale and high intensity wildland fire events during both July 2015 and 2016.

2.3.1 Willow: Sockeye fire, June 2015

A human-caused wildfire started on the northern outskirts of the town of Willow, southcen-

tral Alaska, on June 14, 2015. High winds and dry weather conditions caused the fire to rapidly

grow and spread southwards. Numerous buildings were destroyed. The area north of Willow

consists mainly of mature black spruce forest, interspersed by birch and balsam poplar and bor-

dered by alluvial plains covered in grass and brush. The Susitna River borders the area in the

west.

Unlike most Alaskan boreal forest fires, the road-accessible Sockeye fire was vigorously sup-

pressed. Thus, significant flaming fire activity was limited to less than one week. We selected

this fire site as it offers a diversity of surface characteristics and fuels that were likely to cause

false positive detections in the new Alaska-specific algorithm. This is due to the extensive bare,
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dry, highly reflective sand banks along the Susitna river as well as an old fire scar in the vicinity.

Cloud cover also varied widely throughout the active phase of this fire event.

The geographic extent of this study area is latitude 61.7–61.9°N, longitude 150.0–150.1°W.

2.3.2 Yukon-Koyukuk: multiple wildfires, July 2015

During the last third of the month of June 2015, with hot, dry, windy weather continuing

in western interior Alaska, multiple wildfires were ignited by lightning across the rural areas

of northern Yukon-Koyukuk region. These fires offer an excellent test case for fire detection and

mapping, in particular for large-scale, high-intensity burns in a remote area with little infrastruc-

ture and predominately black spruce forest. We include the following large fire events: Sushgitit

Hills (discovered June 21, final area 126,633.5 ha), Rock (June 19, 57,728.6 ha), Torment Creek

(June 20, 33,359.1 ha), Tobatokh (June 22, 21,867.6 ha), and Holonada (June 22, 19,496.2 ha). De-

tections from neighboring fire perimeters that were active at the same time (Banddana Creek and

Isahultila) are sometimes present at the edge of the study area. The fires remained active from

the time of ignition to mid-August, when wet weather ended large-scale wildfire activity.

We selected this site because the fire events generated a large amount of data (N1000 detec-

tions in a single acquisition), with high fire intensity, and abundant smoke and clouds. As the

area is remote and sparsely populated the fires were classified in the “limited” management op-

tion by the fire protection agencies and essentially left unsuppressed. The only exception is the

Rock fire, in the “full” management option, due to its proximity to the village of Hughes on the

banks of the Koyukuk River. The VIIRS data for this area contain numerous test cases for data

anomalies due to sensor saturation and intense signals.

The geographic extent of this study area is latitude 65.75–66.1°N, longitude 150.9–154.5°W.

2.3.3 Eagle: early-season wildfires, May 2015

We further selected a small area north of the town of Eagle, AK, which was affected by early-

season lightning-ignited fires in late May 2015. The area is mountainous, largely covered by
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either black spruce forest or alpine tundra interspersed with rocky outcrops. The Seventymile

fire (1175 ha) was located approximately 10 km northwest of Eagle, and the Trout fire (106.7 ha)

was a smaller nearby event.

The geographic extent of this study area is latitude 64.75–65.17°N, longitude 140.95–141.75°W.

2.3.4 Northern Koyukuk: multiple large fires, July 2016

From the 2016 fire season we selected a study area containing several of the largest fires of

2016, during a short period of particularly intense fire activity: Hog (discovered July 5, 23,700.5

ha), Hogaza River (June 26, 21,179.1 ha), Iniakuk Lake (June 25, 14,872.0 ha) and Bedrock Creek

(July 3, 2650 ha).

The geographic extent of this study area is latitude 66.5–67.25°N, longitude 152.1–154.2°W.

2.4 Data

This study required data from the northern high latitudes. While on the one hand overlapping

tracks of polar orbiting satellites provide more coverage (and thus more frequent data) in higher

latitudes, poorer computer network infrastructure still poses challenges for reliable and quick

data transmission from mid-latitudes to higher-latitude areas for near real-time applications.

However, local data downlink stations in the high latitudes provide an opportunity to overcome

this challenge. Even though this work is based on data from NOAA and NASA data reposito-

ries, it was undertaken with a view towards future operational use based on processing locally

downlinked data to detect and map fires, and tailor the fire products to regional and local needs.

2.4.1 Global MODIS and VIIRS I-band products

We downloaded MODIS and VIIRS I-band fire detection data from the Land, Atmosphere

Near real-time (NRT) Capability for EOS (LANCE) system, specifically the Fire Information for

Resource Management System (FIRMS) [https://earthdata.nasa.gov/firms]: The near real-time

VIIRS 375 m I-band Active Fire product VNP14IMGT (DOI: 10.5067/FIRMS/VIIRS/VNP14IMGT.

NRT.001) and the MODIS Collection 6 NRT Hotspot/Active Fire Detections MCD14DL (DOI:
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10.5067/FIRMS/MODIS/MCD14DL.NRT.006). At the time of writing, availability of the VIIRS 375

m I-band product via NASA’s portals begins in January 2016. Therefore, we used the 2016 fire

season for the evaluation of global fire products. After limiting the data to the geographic extent

of Alaska, the dataset contained:

• MODIS (based on MODIS Terra and Aqua): 3,769 detected hotspots

• VIIRS I-band (375 m, based on VIIRS on Suomi NPP): 11,091 detected hotspots.

Each data record represents the latitude and longitude of a fire detection associated with the

following attributes: timestamp and brightness temperature measurements, the along-scan and

along-track linear extent of the fire pixel’s footprint on the ground, a confidence index, and fire

radiative power.

Regarding the three 2015 study areas, we were also able to obtain NASA-processed VIIRS

375 m I-band active fire data for selected days in 2015, courtesy Wilfrid Schroeder (University of

Maryland and NOAA/NESDIS Center for Satellite Applications and Research).

2.4.2 VIIRS Sensor Data Record (SDR) data

We based the design of an Alaska-specific VIIRS I-band fire detection algorithm on VIIRS at-

sensor brightness temperature swath data. For this study, we used VIIRS Sensor Data Record

(SDR) data from NOAA’s Comprehensive Large Array-data Stewardship System (CLASS) data

portal. Throughout the entire active fire phase of our two smaller study areas (Willow and Ea-

gle), all available VIIRS SDR datasets, with the exception of those dominated by cloud cover

or lacking any active fire, were analyzed. For the large-scale study areas (Yukon-Koyukuk and

Northern Koyukuk), the analysis is based on the one or two VIIRS scenes that coincide with the

available Landsat 8 data. For later operational use, locally downlinked and processed data from

the Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks

(UAF), a data provider that operates an X-band direct read-out station, will be available. VIIRS

SDR data is provided as HDF5 data files aggregating multiple bands and 86-second granules, plus
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terrain-corrected geodata layers for each granule and each sensor band group (I-bands, M-bands

and Day-Night-Band).

The swath acquired by VIIRS is 3040 km wide, 30% wider than a MODIS swath (2330 km). The

Suomi NPP orbit closely follows that of Aqua (in the “A-train”), but at an orbit that is >100 km

higher. Like Aqua, Suomi NPP makes early afternoon overpasses on an ascending node each day.

The repeat interval is 16 days, the same as Aqua and Terra, so orbital tracks vary from day to day.

At a minimum, two good daytime and two good nighttime overpasses can be expected daily for

any location in interior Alaska.

2.4.3 Fire location and perimeter data

To evaluate the fire detections against a measure for “true” fires, we used the 2016 (and, lim-

ited to the study areas, 2015) additions to the Alaska Large Fires Database (ALFD) (Kasischke et al.

2002) from the AICC’s Geographic Information System (GIS) portal (http://afsmaps.blm.gov/imf/

imf.jsp?site=firehistory). The 2016 dataset consists of a Shapefile containing 155 fire perimeters,

in a geographic coordinate system using the NAD83 datum. AICC also distributes an additional

“Fire Locations” file, which provides point data for the initial location of all events managed by

AICC during the fire season; this is a superset of the fires in the ALFD. For 2016, after removing

events marked as false alarms, there are 592 such fire locations. The GIS files are updated approx-

imately daily during the fire season; they were retrieved in their final form in 2017, after the 2016

season ended.

Table 2.1: Overview of VIIRS swath data scenes that were used for each study area.

Study Area Number of VIIRS SDR granules used Start date End date
Eagle 5 2015-05-27 2015-05-29
Willow 19 2015-06-14 2015-06-19
Yukon-Koyukuk 1 2015-07-06 2016-07-06
Northern Koyukuk 2 2016-07-15 2016-07-15

The attribute information (Table 2.2) published by the AICC includes dates (first detection, last

management action, date the firewas confirmed “out”), environmental factors (fire cause, primary

fuel, total burned area in acres) and management related information, such as false-alarm flags.
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Table 2.2: GIS attributes in the AICC and global fire product datasets that were used in this study. Attribute
names are truncated from the names used within the AICC’s database.

File Field name Description
AICC perimeters CalcAcres Final total area of the burn perimeter, in acres

FireName Name of fire (text label)
DiscDate Date on which fire was discovered (AKDT)
ControlDate Date on which fire was under control
OutDate Date on which fire was extinguished
FalseAlarm Flag marking false alarm fires
GenCause Fire cause (human or lightning)
Comment Plain text comment relating to the provenance

of perimeter geometry data
MODIS, VIIRS-I ACQ_DATE Date of detection (UTC)

ACQ_TIME Time of detection (UTC)

Table 2.3: Landsat and VIIRS scenes used for validation of the AK-specific VIIRS I-band fire detection scheme.

Landsat scene ID Landsat
datetime
(UTC)

VIIRS
orbit

VIIRS granule ID VIIRS
granule
start time
(UTC)

Study area

LC80650142015147LGN00 2015-05-
27
20:47:22

18565 NPP001135168656 2015-05-
27
20:45

Eagle

LC80700172015166LGN00 2015-06-
15
21:19:17

18820 NPP001150756980 2015-06-
15
21:28

Willow

LC80730142015187LGN00 2015-07-
06
21:36:48

19118 NPP001168905804 2015-07-
06
21:36

Yukon-
Koyukuk

LC80740132016197LGN00 2016-07-
15
21:43:04

24438 NPP001492885869 2016-07-
15
20:58

Northern
Koyukuk

24439 NPP001492947321 2016-07-
15
22:41

During pre-processing we confirmed that none of the 155 fires from the ALFD are marked as

false alarms. Inspection of the fire events without corresponding fire perimeter shows that such

fires are typically very small (b1 ha) human-caused fires, often in residential or industrial areas,

and that data available for them may be incomplete. Given our interest in wildland fires we only

analyzed fires for which a perimeter is available, that is, the 155 ALFD fire events.
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During the active management phase of a fire event, operational fire detections from VIIRS

and MODIS are among the data sources used to update fire perimeter geometries. However, at

the end of a fire event the final perimeter data is corrected using the best available source, such

as aerial GPS surveys or digitization of Landsat fire scar imagery (Jennifer Jenkins, Alaska Fire

Service GIS manager, personal communication). In the 2016 data, 66 final perimeters (43%) were

generated from Landsat 8 imagery, 16 (10%) from aerial survey data, 34 (22%) were provided by

operational teams affiliated with the Alaska Department of Forestry or the National Park Service,

26 (17%) from various operational sources, and 13 (8%) were lacking provenance information. Out

of the 10 largest fires, 8 perimeters relied on Landsat 8 data.

2016 fire areas range from 0.2 ha to 23,700.5 ha, with a mean of 1293.7 ha and a median of

83.5 ha. Six fire events exceeded 10,000 ha. The 2016 fire season was below-average, with many

relatively small fires. As a point of comparison, for the extreme 2015 fire season we count 334

fire perimeters with a mean area of 6236.2 ha, a median of 1128.5 ha and a maximum of 126,633.5

ha. 133 out of 155 2016 fire events (86%) were labeled as caused by lightning, compared to only

22 (14%) human-caused fires. Typically, only few large wildland fires are caused by human action

in interior Alaska. To be able to compare and measure distances, we re-projected the geospatial

coordinate information in the fire events and the fire detection datasets to the Alaska Albers Equal

Area projection.

2.4.4 Landsat 8 imagery

To validate the Alaska-specific VIIRS fire detection algorithm, we used three Landsat 8 OLI

images that were acquired within minutes of an available VIIRS granule of the same location

2.3. For the 2016 Northern Koyukuk study area, for which the time lapse between Landsat and

the two closest VIIRS overpass times is approximately 45 min and 58 min, respectively, Landsat

fire detections were not suitable to validate VIIRS-based detections and are therefore used for

visualization purposes only.
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2.4.5 Evaluation of operational MODIS and VIIRS I-band products

For each of the 155 ALFD fires we counted the hotspot detections that are located within a

buffer of 1 pixel (at nadir) around the fire perimeter: 375 m for VIIRS and 1 km for MODIS data.

Furthermore, we required detection time stamps to fall between the “discovery date” and either

the “out date” or, if unavailable, the “control date” attributes of the fire event. The buffer was

used to ensure that fire pixels whose centers lie just outside the recorded perimeter are correctly

counted. The footprint of a MODIS fire pixel is 1 × 1 km at nadir, but can become stretched to a

maximum of 2 × 5 km at the swath end. VIIRS I-band pixels are nearly square with a side of 375 m,

and grow by a factor approximately 2 towards the swath edge. The resulting dataset was then

statistically analyzed to compare the performance of VIIRS I-band and MODIS hotspot counts

and to evaluate their spatio-temporal distribution.

2.4.6 VIIRS I-band Fire Detection Algorithm for High Latitudes (VIFDAHL)

Our processing scheme ingests VIIRS data that are locally downlinked and processed to the

SDR processing level (Figure 2.2); it is based on the following design goals:

• all fire pixels correctly detected by the global VIIRS I-band product must also be detected

by VIFDAHL

• saturated pixels due to fire-related radiance are detected as fire

• the product is superior to the global VIIRS I-band product in detecting residual fire behind

the fire front

• fire detections are classified into high- and low-intensity fire pixels

• false-detection filters are optimized for sources typically found in Alaska, specifically sand

banks and old fire scars

• duplicate detections due to the bowtie effect are removed

We generate the resulting detection product as a polygon vector dataset in order to preserve

the extent of the pixel footprint.
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Figure 2.2: VIFDAHL (VIIRS I-band Fire Detection Algorithm for High Latitudes) processing workflow.
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The scaled integer data in bands I4 (centered at 3.74 μm) and I5 (11.45 μm) were converted

to at-sensor brightness temperature T4 and T5 (Schroeder et al. 2014). As in other fire detection

algorithms, VIFDAHL relies on a large difference in the I4 and I5 brightness temperatures (T4,

T5); pixels that have no elevated T4 or appear cold in T5 (cloud, water) are excluded. In order to

remove highly reflective riverbanks, we need the thermal signal to be elevated as well. To ensure

that thresholds apply across meteorological conditions, we calculate a Normalized Difference

Brightness Temperature Index (NDBTI):

NDBTI =
T4 − T5

T4 + T5
(2.1)

NDBTI values for a typical active fire are shown in Figure 2.3: Fire pixels show elevated

NDBTI values, with the active fire front clearly distinguished from residual fire within the fire

perimeter. Potential sources of false detections are the sandy banks of the river visible to the left

of the fire and a ten year old fire scar in the top left corner. We used a minimum in the NDBTI

frequency distribution close to 0.05 to delineate low- and high-intensity fire areas. Due to the

risk of false detections in locations that are in reality highly-reflective river banks, we added a

check for elevated T5 (>312 K) for daytime images. The thresholds for absolute values of T5 and

T4 have been fixed via a grid search and sampling across the test scenes (Table 2.1): we maximize

the detections within the known fire perimeter up to the point where false detections start to

appear in the known non-fire areas. For each test scene, the entire VIIRS swath, subsetted to the

extent of Alaska, was checked for false detections not associated with a known fire.

A second consideration relates to artifact conditions associated with fires. To assess them, we

considered the pixel quality rasters for both band 4 and band 5 (Stevens 2014). These are 1-byte

raster bands of the same extent as their respective radiance swaths. The single byte encodes four

separate 2-bit quality flags for each pixel as shown in Table 2.4. For nominal data, the value 0

(=00|00|00|00) would be expected.

In the Yukon-Koyukuk study area we found the following anomalous pixel quality values:
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Figure 2.3: Willow study area, Sockeye fire 2015-06-15, 15:09 AKDT: Normalized Difference Brightness Tem-
perature Index (NDBTI) from VIIRS I-band data, overlaid with VIFDAHL detections: high-intensity (yellow
outline), low-intensity (gray outline), saturated (green outline). VIFDAHL was tuned to avoid false positive
detections along the sun- heated riverbanks of the Susitna as well as for the fire scar of the 2007 Su River
fire, despite the elevated NDBTI values in these areas. The center of this scene is at latitude 61.84°N, longitude
150.1°W.

• 2 = 00|00|00|10 (“no calibration”) in both bands I4 and I5. These are essentially no-data

pixels, located towards swath edge, and represent bowtie removal.

• 9 = 00|00|10|01 in band I4: “poor calibration, all saturated”

• 65 = 01|00|00|01 in band I5: “poor calibration radiance out of range” (used for I5)

• 193 = 11|00|00|01 in band I4: “poor calibration, radiance and reflectance out of range”
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Table 2.4: VIIRS I-band pixel anomalies illustrated for a subset of the 2015 Yukon-Koyukuk study area on
2015-07-06. Left: mid-IR brightness temperature (band I4). Right: thermal IR brightness temperature (band
I5). Pixels that saturate in I4 appear white (left) and are outlined in blue; the corresponding I5 brightness
temperature is within the normal range (nominal quality). Anomalous pixels that appear black (left) and are
outlined in green correspond to a “fold-over” of the digital number; all but two of these (white arrows) have
nominal quality brightness temperatures in I5.

2 bits: calibrated pixel
value outside look-up
table limits

2 bits: data required for
calibration missing

2 bits: level of pixel
saturation

2 bits: calibration
quality

00 all within range 00 no missing data 00 none saturated 00 good calibration
01 radiance out of range 01 Raw Data Record

missing
01 some saturated 01 poor calibration

10 reflectance or bright-
ness temperature out of
range

10 calibration data miss-
ing

10 all saturated 10 no calibration

11 both out of range 11 thermistor data miss-
ing

11 not used 11 not used

Figure 2.4: VIIRS I-band pixel anomalies illustrated for a subset of the 2015 Yukon-Koyukuk study area on
2015-07-06. Left: mid-IR brightness temperature (band I4). Right: thermal IR brightness temperature (band
I5). Pixels that saturate in I4 appear white (left) and are outlined in blue; the corresponding I5 brightness
temperature is within the normal range (nominal quality). Anomalous pixels that appear black (left) and are
outlined in green correspond to a “fold-over” of the digital number; all but two of these (white arrows) have
nominal quality brightness temperatures in I5.

As is the case for the wildfires in the contiguous United States examined by Schroeder et al.

(2014), the T4 brightness temperature associated with Q4=9 was at its maximum value (367 K),
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whereas Q4=193 indicates folded values caught at the lower end of the permissible data range (T4

= 208 K). In a small number of pixels we found Q5=65 associated with Q4=193 and a saturated

T5 (see white arrows in Figure 2.4). Whenever Q4=9 or Q4=193, the pixel is counted as a high

intensity fire pixel by VIFDAHL, but the brightness temperature value for these pixels is not

providing any meaningful information. Furthermore, Figure 2.4 also shows some pixels that

appear dark in the T4 plot, and for which T5 shows elevated temperatures; but Q4 and Q5 are

both zero (nominal quality, no green outline) even though T4 is likely to be anomalous. VIFDAHL

does not include a test that flags these as fire pixels.

2.4.7 Validation using Landsat 8

To validate VIFDAHL we used near-simultaneous Landsat 8 OLI imagery. We implemented

the fire detection algorithm described in Schroeder et al. (2015), which uses spectral reflectance

in the OLI SWIR bands (B5 and B7) to preselect “unambiguous” and “marginal” fire pixels and

then re-examines the “marginal” pixels using contextual tests on the B7 reflectance and the B7/B5

reflectance ratio using a 61 by 61 pixel window.

2.5 Results

2.5.1 Exploratory data analysis of operational MODIS and VIIRS I-band fire detection

datasets

Neither of the two global fire products is able to detect all 2016 ALFD wildfires: MODIS failed

to detect 45% and the VIIRS 375 m I-band product failed to detect 35% fires. These relatively

elevated percentages are due to the small size and short burn duration of most 2016 fires, and

cloud conditions. As summarized in Table 2.5, the VIIRS I-band product detects more fires than

theMODIS product, offers an improvement in the detection of smaller fires, and detects numerous

thermal anomalies that are not wildfire, but instead associated with the Prudhoe Bay oil fields

on the North Slope of Alaska, or volcanic eruptions in the Aleutian arc. A small percentage

of detections (2% for VIIRS, 3.3% for MODIS) remain unassigned to either an ALFD wildfire or

another known source. Approximately 40% for VIIRS (85 out of 224) and half for MODIS (63 out

of 126) are located within 5 km of a fire perimeter and are therefore likely to be associated with it.
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The remainder consists in a mix of industrial hotspot and sporadic detections of unknown origin,

more commonly found for the more sensitive VIIRS.

Table 2.5: Overall detection performance of MODIS and VIIRS I-band fire products for detection of 2016 Alaska
wildfires

Fire product Number
of un-
detected
fires

% unde-
tected
fires

Size largest
undetected
fire (ha)

Max. fire
pixels for
one fire

% fire pixels
assigned to oil
exploration
and volcanic
eruptions

% un-
assigned
detections

MODIS 70 45 331 440 0.3 3.3
VIIRS I-band 55 35 196 1,323 3.9 2.0

Table 2.6: Comparison of VIFDAHL with the global VIIRS I-band product and with Landsat 8 fire detections

Study area VIIRS I-
band (global
product)
detections

VIFDAHL
high in-
tens. fire
detections

L8 detections per
VIFDAHL high
intensity pixel:
mean (std)

VIFDAHL
low in-
tens. fire
detections

L8 detections per
VIFDAHL low
intensity pixel:
mean (std)

Willow 2015 15 11 18.7 (12.5) 11 12.7 (19.1)
Eagle 2015 7 8 28.3 (19.9) 1 2 (n/a)
Yukon-
Koyukuk
2015

633 745 14.6 (30.5) 325 7.9 (21.1)

Northern
Koyukuk
2016, scene 1

440 458 n/a 388 n/a

Northern
Koyukuk
2016, scene 2

1006 1143 n/a 791 n/a

The number of VIIRS I-band fire pixels per fire is generally greater than the number of MODIS

pixels because of the much higher resolution of VIIRS I-band (375 m) relative to MODIS (1 km).

The relationship is strongly linear (r2 = 0.93, see Figure 2.5), and there are on average 2.9 times

the number of VIIRS detections for a fire event as MODIS detections (95% Confidence Interval

(CI) for the slope: [2.83, 3.02]). There is a roughly linear relationship between a fire’s size and

the number of fire detections contained within it (Figure 2.5). From linear regression we find an

average of 1.63 MODIS detections (95% CI: [1.51, 1.74], r2 = 0.84) for each square kilometer of final

area burnt, and 4.66 VIIRS I-band detections ([4.26, 5.06], r2 = 0.78).
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Figure 2.5: Global VIIRS I-band (375 m) vs. MODIS (both Terra and Aqua) fire detection counts. A point
represents a fire event of the Alaska Large Fire Database for 2016 (155 fire events). a) Number of fire detections
vs. fire area. Linear regression yields an average of 1.6 MODIS detections (r2 = 0.84) and 4.7 VIIRS I-band
detections (r2 = 0.78) per km2 of fire area. b) There is a strongly linear relationship between the number of
VIIRS I-band and MODIS detections for each fire (r2 = 0.96, slope = 2.9). The 95% confidence intervals are
indicated as shaded.

Figure 2.6: Hourly detection counts across the Alaska 2016 fire season for global fire products: MODIS Terra,
MODIS Aqua and VIIRS I-band (375 m) detections. Hourly counts only show a spike in July and otherwise stay
low (<100). MODIS detections generally fall off in August, while the higher sensitivity of VIIRS still supplies
active fire data. The banding of detection timing is due to the temporal grouping of satellite overpasses. For
MODIS Terra, mid-day/early afternoon overpasses occur on a descending node, and late evening overpasses
on an ascending node; for MODIS Aqua and VIIRS on Suomi NPP, the early afternoon overpasses occur on
an ascending node and the early morning overpasses on a descending node. (All times of day are in Alaska
Daylight Time.)

After early August, when rain inhibited the fire activity (Figure 2.6), MODIS detections are

much reduced. VIIRS I-band still provides some fire detections, especially at night. Some of the

VIIRS detections can be attributed to industrial fires or wildfires too small to be in the ALVD

perimeter dataset. Finally, the geographic distribution of fire detections is dominated by and
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Figure 2.7: Spatio-temporal distribution of fire detections from global active fire products, in Alaska Daylight
Time, during the 2016 fire season, aggregated to a 25 by 25 km grid. Top row: MODIS Terra. Middle row:
MODIS Aqua. Bottom row: VIIRS on SUOMI NPP. There are no fire detections for MODIS Aqua or NPP/VIIRS
during the 18:00 to 24:00 time slot.

clustered around the timing of overpasses. For overpasses for which only the swath-edge over-

laps with Alaska, fires in some geographical areas are likely to be missed by the sensor. These

variations are entirely independent of the processing algorithm and rely only on the orbital and

swath characteristics (Figure 2.7). The narrower range and timing of potential overpass times of

VIIRS compared to MODIS can in some cases lead to a short-lived fire receiving more MODIS

than VIIRS I-band detections.
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2.5.2 VIIRS I-band Fire Detection Algorithm for High Latitudes (VIFDAHL)

We validated VIFDAHL using near-simultaneous Landsat scenes listed in Table 2.3. For the

Willow study area, on June 15, 2015 and the Eagle study area on May 27, 2015, the corresponding

Landsat scenes were acquired within 9 and 2 minutes, respectively, of the VIIRS granule. For

the Yukon-Koyukuk study area, this lapse is approximately 1 minute. Spatially, VIFDAHL detec-

tions show an excellent match with Landsat detections. There is no obvious co-registration error

between the Landsat and the VIIRS footprints (Figure 2.8a and b show close-up imagery).

In freshly burned areas, which contain smoldering and residual flaming fires, we tend to find

detections of low-intensity fire. There is no false signal from riverbanks or old fire scars in any

test scene, but there are areas where sporadic Landsat fire detections are present without a cor-

responding VIFDAHL detection. For the Willow study area (N=22 VIIRS detections), the mean

Landsat fire pixel count for a VIFDAHL high-intensity pixel is 18.7 (standard deviation: 12.5),

and for a low-intensity pixel 12.7 (std: 19.1). For the Eagle case, we identify 9 fire pixels (8 high-

intensity, 1 low-intensity). High-intensity VIFDAHL pixels contain higher numbers of Landsat

fire pixel than low-intensity fire detections (Table 2.6). Landsat pixel counts were not carried out

for the Northern Koyukuk case, as the time lapse between Landsat 8 and VIIRS overpass was too

great and the fires too fast- moving for the result to be meaningful.

VIFDAHL detections were compared with the global VIIRS I-band (375 m) product for all four

study areas (Table 2.6). Overall, high-intensity VIFDAHL detections closely approximate VIIRS

I-band fire pixels (Figure 2.8 a-b, Figure 2.9 b-d). In addition, VIFDAHL delivers a second set of

detections of less intense fire, predominantly in areas that contain Landsat 8 fire detections but no

VIIRS I-band (or high- intensity VIFDAHL detections). Not all low-intensity VIFDAHL detections

contain Landsat 8 detections. While it is not at present possible to exclude that VIFDAHL may

falsely detect areaswhere a fresh fire scar is still hot, but extinguished, possible alternative reasons

for the absence of Landsat detections are: the shorter wavelength of Landsat’s SWIR bands, which

is more affected by smoke and clouds, and requires higher temperatures to activate, and the time

lapse between VIIRS and Landsat overpasses. Moreover, some high- intensity VIFDAHL and

VIIRS I-band fire pixels also correspond to zero Landsat 8 fire pixel counts.
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A source of potentially false VIFDAHL detections can be seen in areas with high-intensity

fire and great amounts of smoke or clouds. Such an example is visible in the two westernmost

fires in Figure 2.9a, as a halo of detections around the area that are certain to contain fire.

In the two smaller and less intensely burning (or more heavily suppressed) test scenes, Eagle

and Willow, VIFDAHL overall yields between 30 and 50% more detections than the global VIIRS

I-band dataset. For the two large-scale extended burn events of the 2015 Yukon Koyukuk and

the 2016 Northern Koyukuk study area, we count approximately 90% more VIFDAHL than VIIRS

I-band detections, some of them capturing residual fire as mapped by Landsat, some due to the

halo-effect around smoke plumes.

2.6 Discussion and conclusions

VIFDAHL is easy to implement and computationally light-weight, as it uses simple thresholds on

bands and band combinations, tuned for Alaskan boreal forest fires. TheAlaska-specific approach

with VIFDAHLwas able to detect more low-intensity fire pixels than the global operational VIIRS

I-band products. This is of interest for mapping areas that are most likely to pose a residual hazard

and need to be monitored for any renewed need of fire suppression activity. While VIFDAHL

appears to successfully avoid false detections from river banks or old fire scars, futurework should

look more closely into errors of commission, informed by experience gathered in operational use.

Local VIFDAHL processing enables enhanced geolocation, which can be used for superior fire

progression mapping (Figure 2.10). Another application would be stacking of repeated VIFDAHL

detections in the same location to be used to estimate fire residence time, with potential links to

fire severity. Further study is desirable with the objective to test the algorithm on the Canadian

and Eurasian boreal forests.
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Figure 2.8: Overview of three study areas with VIFDAHL fire detections outlined in yellow (high-intensity
active fire) and gray (low-intensity fire), on a background of near-simultaneous Landsat 7-5-3 false color RGB
composite with Landsat fire detections overlaid in red. a) Eagle, 2016-05-27, central latitude 64.0°N, longitude
141.4°W. b) Willow, 2015-06-15, central latitude 61.8°N, longitude 151.1°W. c) Northern Koyukuk 2016-07-15,
central latitude 66.9°N, longitude 153.1°W. In a) and b), VIFDAHL fire pixels that are also detected by the global
VIIRS 375 m I-band product are shaded.

34



Figure 2.9: Overview and zoom into 2015 Yukon-Koyukuk study area, 2015-07-06, central latitude 65.9°N,
longitude 152.7°W. Fire detection from a single VIIRS scene at 12:58 local time (AKDT) on top of a Landsat
8 bands 7-5-3 false color RGB composite, with Landsat fire detections marked in red. a) Entire study area,
VIFDAHL detections, zoomed-in area outlined in red. b) Fire detections from the global VIIRS I-band product. c)
VIFDAHL high-intensity detections. c) VIFDAHL low-intensity detections, with the locations of high intensity
detections masked out in black for greater visual contrast

Figure 2.10: Willow study area, fire progression in 6-hour intervals. Roads, the Susitna River, and the official
AICC fire perimeter are outlined. Left: MODIS active fires (pixel dimensions, but not orientation, are realistic
from data). Right: VIFDAHL. A complete dataset of the global VIIRS I-band detections was not available for
this 2015 fire.
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Chapter 3

FIRE DETECTION AND TEMPERATURE RETRIEVAL USING EO-1 HYPERION DATA OVER

SELECTED ALASKAN BOREAL FOREST FIRES1

Abstract

Infrared imaging spectrometers are used to map and characterize wildland fire based on their

sensitivity to fire-emitted thermal radiation and ability to resolve spectral emission or absorption

features. There is a general paucity of research on the use of space-borne imaging spectroscopy

to study active fires in the North American boreal forest. We used hyperspectral data acquired by

the Hyperion sensor on the EO-1 satellite over three wildfires in Alaska’s boreal forest to evaluate

three fire detection methods: A metric to detect an emission feature from potassium emitted by

biomass burning; a continuum-interpolated band ratio (CIBR) that measures the depth of a carbon

dioxide absorption line at 2010 nm; and the Hyperspectral Fire Detection Index (HFDI), which is

a normalized difference index based on spectral radiance in the short-wave infrared range. We

found that a modified version of the HFDI produces a well-defined map of the active fire areas.

The CO2 CIBR, though affected by sensor noise and smoke, contributes a slight improvement to

the fire detection performance when combined with HFDI-type indices. In contrast, detecting

a fire signal from potassium emission was not reliably possible in a practically useful way. We

furthermore retrieved fire temperatures by modeling the at-sensor radiance as a linear mixture

of two emitted and two reflected spectral radiance endmembers. High-temperature fire areas

(the high-intensity fire front, modeled at 800-900 K) and low-temperature combustion (residual

fire at 500-600 K), were mapped. High-temperature burning areas as small as half a percent of a

Hyperion pixel (approx. 5 m2) were detectable. These techniques are of potential interest for fire

characterization in the boreal areas of the circumpolar North using current and future satellite-

borne imaging spectrometers.

1Waigl, C. F., Prakash, A., Stuefer, M., Verbyla, D., & Dennison, P. (2017). Manuscript submitted to
Remote Sensing of Environment
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3.1 Introduction

Satellite-based infrared remote sensing has been in use since the 1980s as a cost-effective way to

detect and investigate wildfires (e.g. Flannigan and Haar 1986; Ichoku et al. 2012; Prakash et al.

2011; Robinson 1991). Multispectral sensors, which typically offer a small number of carefully

placed spectral bands, are widely used. For the detection of radiation emitted by active fire, the

mid- and thermal infrared (MIR and TIR) regions of the electromagnetic spectrum are of particular

interest (Briess et al. 2003; Giglio et al. 2003, 2016; Kaufman et al. 1998; Schroeder et al. 2014) as

the fire-emitted radiance in the MIR range (approximately 4 μm) far exceeds background levels

even if fire only occupies a small portion of a pixel. Other techniques employ shortwave infrared

(SWIR) data from sensors with a spatial resolution of approximately 30 m and suitable sensitivity

and saturation behavior (Giglio et al. 2008; Schroeder et al. 2015).

In contrast, in imaging spectroscopy (also called hyperspectral remote sensing), data is ac-

quired in a large number of contiguous spectral bands that typically span the visible and near-

infrared (VNIR) as well as the shortwave infrared regions of the electromagnetic spectrum. Given

that an imaging spectrometer produces a radiance or reflectance spectrum at every pixel of the

image, a frequently used approach consists in unmixing these spectra using spectral libraries of

relevant land cover classes (Roberts et al. 1998). Imaging spectroscopy has been applied to wild-

fire analysis with respect to pre- and post-fire research topics such as vegetation classification

(Dalponte et al. 2013; Dennison et al. 2006; Goodenough et al. 2003), fire danger (Roberts et al.

2003), forest canopy fuel characteristics (Jia et al. 2006) and fire severity (Lewis et al. 2011). Nearly

all of these works use airborne hyperspectral imagery. Studies of high-temperature events that

are relevant to satellite-based hyperspectral remote sensing include applications to volcanology

(Abrams et al. 2013; Wright et al. 2010), fire detection (Amici et al. 2011; Dennison 2006; Den-

nison and Roberts 2009) and fire characterization via fire temperature and fractional pixel area

retrieval (Dennison et al. 2006; Dennison and Matheson 2011). These studies rely on the spectral

emission and absorption features, sensitivity, and large number of data points produced by the

hyperspectral instrument instead of MIR or TIR bands, which are generally not available.
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Active fire in the boreal forest is currently not well-studied using imaging spectroscopy de-

spite the fact that wildland fire is an important factor in the boreal forest eco-region (Chapin et al.

2000). For Alaska, where a majority of the boreal areas of the United States of America is located,

wildfires consume an average of 7500 km2 annually (Kasischke et al. 2010). The average annual

burned area has been estimated to increase by 2.4 %/yr (Calef et al. 2015, for 1943-2012) to 3.1

%/yr (Giglio et al. 2013, for all of boreal North America, 1995-2011).

The Hyperion sensor on the National Aeronautic and Space Administration’s (NASA’s) EO-1

(Earth Observation 1) satellite platform (Middleton et al. 2013; Pearlman et al. 2003; Ungar et al.

2003) offers an opportunity to fill this gap and develop methodologies that will be more useful as

future imaging spectrometers become available. Currently, planned missions are NASA’s Hyper-

spectral Infrared Imager (HyspIRI) (Abrams et al. 2013; Lee et al. 2015; Middleton et al. 2010), the

German Environmental Mapping and Analysis (EnMAP) instrument (Kaufmann et al. 2006), and

the Spaceborne Hyperspectral Applicative Land and Ocean Mission (SHALOM) (Ben Dor et al.

2014; Feingersh and Ben Dor 2015), a collaboration of the space agencies of Israel and Italy. All of

these missions will offer a spatial resolution comparable to Hyperion, a similar range of spectral

channels, and reduced noise. HyspIRI will also include a multispectral TIR instrument (Realmuto

et al. 2015; Roberts et al. 2012).

We explore the application of satellite-based imaging spectroscopy to the study of the prop-

erties of active fires in Alaska’s boreal forest. In the following sections, we introduce our three

study areas, which are located in interior Alaska, and provide an overview of the available Hy-

perion data. We then describe three known fire detection methods that have the potential to

be applicable to our study scenes: the Hyperspectral Fire Detection Index (HFDI), the detection

of a potassium (K) emission feature, and the carbon dioxide continuum-interpolated band ratio

(CIBR), which relies on the measurement of an absorption feature to differentiate between emit-

ted and reflected radiation. We also describe how sub-pixel active fire temperatures and fractional

areas are retrieved using a linear combination of simulated atmospherically corrected emission

spectra and reflected background spectra. The description of methods is followed by a summary

of results and their discussion. We conclude by evaluating our findings with a view on how these

43



methods could be applicable to future satellite-borne hyperspectral sensors and which design

features might be particularly beneficial for active boreal forest fire remote sensing.

3.2 Study Areas

We selected three study areas (Figure 3.1) based on the availability of EO-1 Hyperion data over

large Alaskan wildfires. We searched the catalog of available scenes in the United States Geolog-

ical Survey (USGS) data archive based on fire location and time data from the Alaska Large Fires

Database (ALFD) (Kasischke et al. 2002) and subsequently selected all scenes that clearly showed

several clusters of contiguous pixels with active combustion that were not obscured by smoke or

clouds. The selected scenes represent the 2004 Boundary fire, the 2004 Crazy fire, and the 2009

Wood River fire.

With a burned area of 2150 km2, the 2004 Boundary fire north of Fairbanks, Alaska, was the

largest wildfire of the most extreme Alaska fire season on record: During the summer of 2004, a

total of 27 000 km2 burned in approximately 700 separate fire events (AICC 2004). The Boundary

fire, discovered on June 13, 2004, was a highly destructive lightning-caused event which greatly

impacted air quality (Grell et al. 2011) and aerial traffic across interior Alaska (Wendler et al.

2010), and was sufficiently severe to affect the post-fire succession of tree species in the boreal

forest (Johnstone et al. 2010).

The 2004 Crazy fire was a smaller fire event (final burned area: 210 km2) whose active period

overlapped with the Boundary fire. It started from a lightning-caused ignition on July 4, 2004,

approximately 75 km north-east of the Boundary fire.

The Wood River fire of 2009 also had air quality impact on Fairbanks. It burned in an area

reserved for military use south of the town. Its final size is given as approximately 500 km2 (AICC

2009), but its burn perimeter includes considerable unburned areas. (The official designation of

this fire event is ”Wood River 1”, but we omit the number for the sake of readability.)

The land cover in all three study areas is dominated by highly flammable black spruce forest.

Stand density is much lower for the Wood River fire, which burned through a mix of forest and
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Figure 3.1: Map of study areas and corresponding final fire perimeters within interior Alaska. The rectangular
areas represent the three Hyperion study scenes. Rivers and major roads are marked.

open brush land. The landscape is wetter and flatter than for the Boundary or the Crazy fire,

located in hilly areas at higher elevations (500 to 1000 m above mean sea level). The Boundary

fire also affected mixed conifer and hardwood stands.

3.3 Data

3.3.1 The Hyperion sensor on EO-1

The Hyperion sensor is a pushbroom instrument with a 7.7 km wide imaging swath and a

ground-sampling distance (GSD) of 30 m (Ungar et al. 2003). It is composed of two separate

spectrometers: A VNIR instrument (400 - 1000 nm) and a SWIR instrument (1000 - 2500 nm), both

with a spectral bandwidth of 10 nm (Figure 3.2) (Barry 2001). In total, it has 242 spectral bands,

with VNIR and SWIR channels overlapping around 1000 nm. Due to the moderate signal-to-
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noise ratio (SNR), which deteriorates in the SWIR region compared to the VNIR, only 198 unique

calibrated usable channels – 50 VNIR and 148 SWIR – are processed in the Level 1B product

(Pearlman et al. 2003). The longest-wavelength calibrated channel is band 224 (central wavelength

2395.5 nm).

Originally conceived as a 1-year technology demonstration, the EO-1 mission went through

several extensions (Middleton et al. 2013) after its initial operational phase (11/2000 – 2/2002) was

completed. Orbital parameters were not preserved throughout the extensions. The data for the

2004 Boundary and Crazy fires were acquired during the initial extended phase that ended in late

2005, during which the EO-1 spacecraft was maintained in a 705 km orbit. In 2006, EO-1 was

lowered until it reached an orbital height of 690 km, at which point, in 2007, the mission was

revived (ibid.). The 2009 Wood River study scene was acquired during the phase that followed.

2016 was EO-1’s last operational year.

Hyperion data is distributed as 12-bit unsigned integer raster data, which is radiometrically

and terrain-corrected (Simon 2006).

Figure 3.2: Wavelength range of the VNIR and SWIR instruments of the Hyperion sensor. Some blackbody
spectra are superimposed for comparison.

3.3.2 Hyperion scenes

For all three study scenes, the Hyperion scene reference, scene start time stamp, sensor look

angle and latitude/longitude of the center of the used subset are summarized in Table 3.1. All

overpasses took place within 20 min of 1 pm Alaska Daylight Time, on a descending node.
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TheHyperion scene available for the Boundary fire was acquired on July 19, 2004 and captures

a small portion of the fire close to the western boundary of the final fire perimeter (Figure 3.1).

Between the peak of the fire event on July 17 and the overpass of the EO-1 satellite two days later,

traces of precipitation halted its progress. The Hyperion imagery for the Crazy fire was acquired

on July 10, 2004, when it was highly active.

The third study scene was acquired over the Wood River fire on August 2, 2009, during a

high-intensity phase of the fire event. Unfortunately, the Hyperion swath missed the most active

portions of the fire front and only captured a number of relatively small fire pixel clusters, which

are also spread over a larger area than in the 2004 Crazy and Boundary fire scenes. The 2009 data

also appears to contain more noise and more pronounced pushbroom stripes than the earlier

scenes. Therefore, we do not present any detailed maps of fire detection or temperature retrieval

over this scene. However, the Wood River data was included in the evaluation of fire detection

indices.

Table 3.1: EO-1 Hyperion scenes and central latitude/longitude (WGS 84) of the subsets used

Fire name Hyperion scene Scene starttime
(UTC)

Sensor
look
angle

Latitude Longitude

Crazy EO1H0680132004192 2004-07-10 21:07:57 10.358° 65.74979° -145.0569°
Boundary EO1H0690142004201 2004-07-19 21:02:11 -2.4442° 65.28703° -147.7966°
Wood River EO1H0690142009214 2009-08-02 20:40:37 -16.446° 64.44595° -147.8978°

3.4 Methods

Our Hyperion processing steps are summarized in Figure 3.3. After subsetting the swaths to

the study areas, the digital numbers were converted to spectral radiance by dividing them by

the scaling factors of 40 for the VNIR bands and 80 for the SWIR bands, specified in the scene

metadata (ibid.). The theoretical upper limits for measurable radiance are 819.2 W/(m2 µmsr)

(VNIR) and 409.6 W/(m2 µmsr) (SWIR), respectively.
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Figure 3.3: Hyperion processing flow

3.4.1 Fire-related feature extraction

The evaluation and comparison of fire detection methods requires labeled fire and non-fire

pixel data, which we generated by applying supervised classification to the study scenes. We

used a false natural-color RGB image of each scene (bands 150-50-23, with central wavelengths of

1648.9 nm, 854.18 nm, and 579.45 nm) tomanually sample 20 pixels from each of the following four

classes: fire, fresh fire scar, vegetation (forest or forest/shrubland), smoke/cloud. We carefully

selected areas that were as pure as possible, avoiding mixed land cover classes and data anomalies

such as saturation effects. By “fire” we mean pixels that contain actively burning areas. The

Crazy fire imagery contained enough of both smoke and cloud that 20 pixels from each class

were sampled, whereas the Wood River imagery is virtually smoke/cloud free, so the class was

not sampled.
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We further constrained the study areas more narrowly to the fire-adjacent region using a

mask which we constructed by first applying a spectral radiance threshold of 5 W/(m2 µmsr)

in band 220 (2355.21 nm). The threshold was based on an inspection of non-fire pixels, whose

spectral radiance was less than this value). For the Crazy fire scene, we additionally excluded

cloud pixels, which are highly reflective in the SWIR. Then we drew a convex shape around the

set of all pixels exceeding the threshold, leaving a 20 pixel buffer. The resulting mask ensures

that only data located in the vicinity of active fire was processed. The pixels contained in these

irregularly shaped final subsets were classified with a Random Forest classifier (Breiman 2001), a

supervised classification method that has been successfully applied to Hyperion data (e.g. Ham et

al. 2005), with the manually labeled sample pixels serving as training data. To assess the stability

of the classifier and confirm the adequacy of using 20 training samples per class, we carried out

a K-fold cross-validation (K = 10) (Friedman et al. 2001).

The pixels in the “fire” class served as a data source for labeled fire pixels to evaluate fire detec-

tion methods, while the “vegetation” and “fire scar” classes represented the non-fire background.

The “fire” class also was used as the input for fire temperature retrieval.

3.4.2 Fire detection

Fire detection in imaging spectroscopy data can use a number of different approaches. One

is to rely on the same methods as fire detection in multi-spectral imagery: to identify thermal

anomalies based on the electromagnetic radiation emitted by a burning source. If we represent

the fire as a blackbody held at a constant temperature, the emitted spectral radiance is given by

Planck’s law:

Lλ =
2hc2

λ5

(
e

hc
λkT − 1

) (3.1)

with T the absolute temperature, λ the wavelength, h Planck’s constant, k Boltzmann’s con-

stant and c the speed of light. With increasing temperature, the maximum of the emission curve
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moves towards shorter wavelengths, in a relation that is inversely proportional to the tempera-

ture (Wien’s law):

λmax ∝ T−1 (3.2)

The spectrum of a pixel that contains fire activity will therefore show a higher overall radiance

of the longer SWIR wavelengths compared to what its spectrum would look like without fire.

Alternatively, hyperspectral remote sensing canmake use of features that are caused by potas-

sium emission and carbon dioxide absorption (Amici et al. 2011; Dennison 2006; Dennison and

Roberts 2009; Vodacek et al. 2002).

We tested and, where necessary, adapted three known fire detection indices for hyperspectral

data, each time proceeding in an identical fashion: Between all test scenes, we randomly sampled

250 fire pixels (from the “fire” class) and 250 background pixels (from the “vegetation” or “fire

scar” class), calculated each index for all sample pixels and statistically analyzed the result for its

ability to differentiate fire and background. We calculated all fire detection indices based on at-

sensor spectral radiances that were uncorrected for atmospheric effects as a first approximation.

During our analysis we also tested combinations of two or all three indices to maximize detection

accuracy and minimize false detections (errors of commission).

3.4.2.1 Potassium (K) emission

This method uses the potassium (K) emission lines at 767 and 770 nm (Vodacek et al. 2002)

characteristic for biomass burning. In Hyperion data, both emission lines fall within band 42

with a central wavelength of 772.78 nm. Its spectral radiance would be elevated in the presence

of fire-stimulated potassium emissions (Cahill et al. 2008), but the neighboring band at 780 nm

would not be.

Dennison and Roberts (2009) define a K-emission index as the ratio L770nm/L780nm and use it

with data from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS), while Amici et al.
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(2011) examine high spectral resolution as well as simulated and real Hyperion data using ametric

called the Advanced K-Band Difference (AKBD). In Hyperion data the AKBD metric translates to

the band difference L770nm − L780nm.

Values for the K-emission ratio are expected to be <1, and AKBD values <0. This is because

the 770 nm band is also the location of multiple oxygen absorption lines which overlap with the

K-emission features (Vodacek et al. 2002) and, averaged over the width of the 770 nm Hyperion

band, lead to a distinctly visible absorption feature (Amici et al. 2011).

3.4.2.2 Carbon dioxide continuum-interpolated band ratio (CO2 CIBR)

The second fire detection method makes use of the CO2 absorption feature at 2010 nm. It

takes advantage of the principle that radiation emitted by a fire only has to travel through the

atmosphere once to arrive at a satellite-borne sensor, whereas reflected sunlight traverses the

atmosphere twice. Emitted radiation at this spectral location therefore undergoes less absorp-

tion than reflected radiation. Therefore, for fire pixels, the CO2 absorption line should appear

less pronounced than for background pixels. Mathematically, the depth of the absorption line is

captured by defining an index called the carbon dioxide continuum-interpolated band ratio (CO2

CIBR) (Dennison 2006; Dennison and Roberts 2009), used successfully for fire detection with Hy-

perion and AVIRIS data. As the absorption feature is located on an upslope section of the radiance

spectrum, the two shoulders of the feature are not typically at the same value. This situation is

reflected via interpolation factors used in the formula provided by Dennison (2006):

CIBR =
L2010 nm

0.666 L1990 nm + 0.334 L2040 nm

(3.3)

3.4.2.3 Hyperspectral fire detection index (HFDI)

The third approach uses a normalized difference index calculated from the spectral radiance

values in two suitable SWIR bands, which enables the detection of pixels that contain thermal
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anomalies. (Dennison and Roberts 2009). Dennison and Roberts (ibid.) found the following HFDI

performing the best on AVIRIS data for daytime detection of the Simi Fire in California:

HFDI = L2430 nm − L2060 nm

L2430 nm + L2060 nm

(3.4)

A threshold for detection is determined at a value that optimally separates fire pixels from

non-fire pixels; it is typically close to zero, or has a small negative value (ibid.).

The value of 2430 nm exceeds the longest wavelength available in Hyperion’s L1B calibrated

spectral radiance product. We therefore determined a suitable combination of spectral bands to

substitute the lower and upper wavelengths used in (3.4) and used this modified HFDI for further

fire detection performance analysis.

3.4.3 MODTRAN for atmospheric correction

Active fire temperature retrieval requires atmospherically corrected sources of emitted in-

frared radiation. We used MODTRAN 5.3 (Berk et al. 2006) to generate transmittance profiles for

each study scene across the wavelength region between 350 and 2500 nm. The MODTRAN input

was based on user-specified model atmosphere from radiosonde data acquired at noon on the day

of the respective overpass at Fairbanks International Airport (PAFA station) distributed by the

University of Wyoming Atmospheric Sciences Department (http://weather.uwyo.edu/upperair/

sounding.html). Due to the presence of active fire, and therefore smoke, in the study scene, we

selected the predefined option “rural extinction, visibility 5 km”. Additional MODTRAN input

parameters are summarized in Table 3.2.

The transmittance profiles were then used to generate a set of simulated atmospherically

corrected blackbody radiance spectra to serve as temperature endmembers in a linear model.
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Table 3.2: Configuration used with MODTRAN 5.3

Parameter Comment
MODEL = 7 User-specified model atmosphere from radiosonde data

(PAFA station, noon)
ITYPE = 2 Vertical or slant path between two altitudes
IHAZE = 2 RURAL extinction, default VIS = 5 km
IEMSCT = 0 Spectral transmittance mode only
CO2MX = 390.0 CO2 mixing ratio
H1 / GNDALT Determined from altitude of center of subset
H2 Determined from highest level available in radiosonde

profile
ANGLE Determined from sensor look angle
V1 = 350 Initial wavelength (nm)
V2 = 2500 Final wavelength (nm)
DV = 1 Wavelength step (nm)

3.4.4 Temperature retrieval

The spectrum measured at the pixel that is the site of active fire can be modeled as a linear

mixture of emitted and reflected components (Dennison et al. 2006). We represented themeasured

at-sensor spectral radiance Lλ,m as the sum of signals that originate from a numbern of fractional

areas each of which burns at a constant temperature Ti, plus uniform background components:

Lλ,m =

n∑
i=1

pi,fireLλ(Ti) +

m∑
j=1

pj,backgroundLj,reflected (3.5)

Lλ(Ti) is the atmospherically corrected spectral radiance of the temperature component Ti,

Lj,reflected is the jth background component, and thepi andpj are the corresponding fractional pixel

areas, which have to add up to 1. Atmospheric scattering was taken into account via the IHAZE

parameter in the MODTRAN transmittance calculation (Section 3.4.3, Table 3.2). Otherwise, path

radiance was neglected (following e.g. Dennison and Matheson 2011). This approach is similar

to the two-component sub-pixel temperature and fractional area retrieval method developed by

Dozier (1981) usingmid- and thermal infrared data; the uncertainties in retrieved fire temperature

and fractional area increase substantially when the fractional fire area becomes very small (Giglio

and Kendall 2001).
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In order to select suitable background components Lj,reflected we considered that the reflected

contribution dominates in the VNIR spectral range. To reduce the influence of the reflected radi-

ation components and scattering by smoke at shorter wavelengths we limited the analysis to all

wavelengths λ >1400 nm (100 calibrated Hyperion channels). In the vicinity of active fires, we are

likely to find two physically distinct background landcover types: vegetation and fire scar. After

inspecting SWIR spectra from the “vegetation” and “fire scar” classes, we found them to be quite

distinct, at least in the shorter wavelength part of the SWIR range (between 1400 and 1800 nm)

and therefore opted for two separate background contributions (m = 2). The pj,background become

the fractional areas pveg and pscar.

For the emitted components Lλ(Ti) we used Planck blackbody spectra which we atmospher-

ically corrected using the MODTRAN 5.3 transmittance profiles calculated for each acquisition

date. For each study case, a catalog of these temperature endmembers was generated covering

the temperature range between 40 K and 1200 K in steps of 10 K.

To determine the parameters Ti and pi we used least-squares curve fitting for the set of all

pixels in the “fire” class. The best-fitting n temperature endmembers are retained as modeled

temperature components. Regarding the choice of n, Dennison et al. (2006) used a single tem-

perature component, but at a much higher spatial resolution (AVIRIS GSD of 5 m instead of 30 m

for Hyperion) which is more likely to be adequately described by a single fire temperature. A

different example comes from an application to lava temperatures using Hyperion data (Abrams

et al. 2013; Wright et al. 2010), where an n of 2 or 3 yielded a satisfactory fit. We started with

a single temperature component followed by an increase of n to 2, checking whether the RMS

error improved.

In our model, m = 2 and n = 2 means fitting five parameters to 100 Hyperion SWIR data

points (T1, p1,fire, T2, p2,fire and pveg, with pscar determined via the constraint that the sum of all

fractional areas must be 1). Even though it would appear that there is no risk of overfitting, there

are strong arguments against further increasing n: The spectral radiance values of a Hyperion

SWIR spectrum are not arbitrary, but correlated with each other. They are also affected by sensor

noise, and wemade a number of simplifying assumptions (that the fire targets are blackbody radi-
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ators, that path radiance is minimal and can be neglected, that the composition of the background

is uniform). For the area footprint (900 m2) of a Hyperion pixel, model output with two temper-

ature components would appear to reasonably describe a physical reality, but this becomes less

true when the number of temperature endmembers increases.

3.5 Results

3.5.1 Fire detection and comparative analysis

Fire, fire scar, vegetation and smoke/cloud areas (Figure 3.4) were delineated for each study

area using a Random Forest classifier. We set the number of decision tree estimators in the classi-

fier to 100 and verified the stability of the classification by repeat runs, observing that pixel counts

in all classes remained roughly equal. Furthermore, a 10-fold cross-validation, each time with a

different 60/40 split of the labeled input data into training and test sets, yielded accuracy and F1

(macro) scores (the harmonic average of true positive rate [or recall] and the positive predictive

value [or precision]) of 0.97 ± 0.11 (for both). This good result also confirms that selecting 20

labeled training samples in each class was sufficient. The final classifications have 1019 pixels in

the “fire” class for the Crazy fire test site, 662 for the Boundary fire scene, and 197 for the Wood

River scene. Across the classified scenes, we randomly sampled 500 pixels for use as a labeled

test set to evaluate fire detection indices (200 each from the Crazy and Boundary fire scenes and

100 from the Wood River scene, given the smaller number of fire pixels in this scene). Half the

samples were drawn from the “fire” class and half from “fire scar” or “vegetation”, which together

represent the “background” class for the purpose of fire detection.

Spectra from the “fire” class that are free from anomalies or saturation effects can be dis-

tinguished from background pixels by observing the spectral radiance values in the SWIR range:

Unlike in pure background pixels, whose spectrumwould continue to fall off, a contribution from

emitted SWIR radiation is apparent (Figure 3.5 a). At higher fire intensities the longer-wavelength

SWIR part of the spectra saturates, reaching spectral radiances close to the theoretical maximum

of 409.6 W/(m2 µmsr) (Figure 3.5 b) However, we observe that not all saturation effects mani-

fest as a range of radiance values pinned to the theoretical maximum: in some pixels, and even
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Figure 3.4: Crazy fire (top) and Boundary fire (bottom). Left: Overview plot from the Moderate-resolution
Imaging Spectroradiometer (MODIS) on the Terra satellite, acquired the same day as the Hyperion scene. RGB
composite using bands 7-2-1. The extents of the Hyperion scenes are marked by yellow rectangles. Middle:
Hyperion RGB composite using bands 150-50-23 in RGB (1648.9 nm, 854.18 nm, and 579.45 nm), with manual
samples marked. Right: classification output. Cloud and smoke classes are combined. The irregular shape
of the classified subsets (right) reflects the final subset masks, which delineate the fire-adjacent zones using a
simple SWIR radiance threshold.

at radiance levels below those of the most intense fires, individual bands exhibit spikes (which

may or may not extend all the way to the saturation maximum) even when neighboring bands do

not. This may be due to potential differences in the lag time between saturation and becoming

operational again for individual Hyperion detector elements.

The CO2 absorption feature used for calculating the CO2 CIBR index is markedly present

at approximately the expected location (Figure 3.5 c). After data inspection, we used bands 183

at 1981.86 nm and 188 at 2032.35 nm for the shoulders of the absorption line, and band 185 at

2002.06 nm, where the minimum of the absorption feature was consistently located, for its center.

In contrast, no K-emission feature in band 42 is discernible with the naked eye (Figure 3.5 d).

We then evaluated all three indices over the labeled test set of 500 sample pixels (Figure 3.6).

For the HFDI, band 224, with a central wavelength of 2395.5 nm, is the longest-wavelength cal-
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Figure 3.5: Examples of fire pixel radiance spectra. a) and b) represent a selection of fire pixel spectra (taken
from the Crazy fire study area at the indicated pixel locations). c) and d) show the theoretical absorption or
emission feature location and relevant bands used for fire detection with the the CO2 CIBR and K-emission
methods, respectively.

ibrated band, and we found the top of the Hyperion band range, beyond approximately band

220, to be extremely noisy. As for the shorter wavelength used to construct the published HFDI

(Dennison and Roberts 2009), 2060 nm is closest to Hyperion’s band 191. To consider a range of
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Figure 3.6: Comparison (box plots) of the distributions of average HFDI, carbon dioxide CIBR and K-emission
band difference index across fire and background pixels for each fire event. The whiskers extend to the highest
and lowest datum still within 1.5 times the inter-quartile range. Data points beyond this range are plotted as
outliers.

candidate bands for a Hyperion-based HFDI we selected all combinations of shorter-wavelength

and longer-wavelength bands that can be generated from any of the bands 190, 191, 192, 193,

194, 195, and 196 as the shorter-wavelength band and any of the bands 217, 218 and 219 as the

longer-wavelength band. We thereby avoided the bands in the middle of the spectral radiance

“plateau”, which are often affected by anomalies and saturation effects (Figure 3.5).

It was apparent that for an HFDI calculated with band 190 as the shorter-wavelength band,

both the variance of HFDI values and the separation of fire and background HFDI values was

worst, likely due to sensor noise in band 190. To further quantify the available choices for a

Hyperion-specific HFDI, we modeled the distribution of HFDI values in both the fire and back-

ground class for each combination as normal distributions and calculated their overlap (which

represents the sum of all errors of commission and of omission), the optimal cut-off value to sep-

arate fire from background, as well as the positive predictive value and the F1 score (Table 3.3),

which takes into account both errors of commission and of omission.

Several potentially “best” combinations obtain very similar results in positive predictive value

and F1 score and there is no clear cut-off other than removing band 190 from consideration. We

therefore discarded the three combinations of band 190 with bands 217 to 219 and averaged the

remaining 18 HFDI combinations. Averaging the indices calculated from multiple bands has the

advantage of reducing the influence on single-band noise on the resulting mean index value.
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Figure 3.7: Values of average HFDI and CO2 CIBR for the Crazy and Boundary fire study areas. For the
Boundary fire, the sub-region, marked by a rectangle, is enlarged (bottom row). For the enlarged region, we
added the K-emission (AKBD) metric (extreme outlying values only). The colors correspond to the supervised
classification, identical to Figure 3.4: fire (yellow), fire scar (brown) and vegetation (green). The gray (including
white) values are the fire detection metrics on the same color ramp as the zoomed-out plots.
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Table 3.3: HFDI band combinations evaluated for 500 labeled sample pixels (fire and background). The cut-off
column refers to the optimal HFDI value to separate fire from non-fire. The overlap column represents the
modeled overlap between the fire and non-fire distribution. The true detection rate is the true positive rate
calculated for fire detection. PPV represents the positive predictive value for fire detection.

Bands Central λ (nm) Cut-off Overlap True detection rate PPV F1 score
196, 217 2113.04, 2324.91 -0.172 0.138 0.868 0.879 0.873
196, 218 2113.04, 2335.01 -0.192 0.146 0.864 0.882 0.873
195, 218 2102.94, 2335.01 -0.192 0.143 0.86 0.885 0.872
195, 217 2102.94, 2324.91 -0.152 0.149 0.84 0.901 0.87
196, 216 2113.04, 2314.81 -0.172 0.134 0.84 0.897 0.868
195, 216 2102.94, 2314.81 -0.172 0.144 0.836 0.889 0.862
194, 218 2092.84, 2335.01 -0.172 0.169 0.836 0.878 0.857
193, 218 2082.75, 2335.01 -0.152 0.177 0.84 0.868 0.854
193, 217 2082.75, 2324.91 -0.111 0.185 0.812 0.894 0.851
194, 217 2092.84, 2324.91 -0.131 0.161 0.816 0.887 0.85
194, 216 2092.84, 2314.81 -0.152 0.149 0.824 0.873 0.848
192, 216 2072.65, 2314.81 -0.051 0.175 0.812 0.886 0.848
193, 216 2082.75, 2314.81 -0.131 0.172 0.828 0.855 0.841
192, 218 2072.65, 2335.01 -0.071 0.18 0.82 0.861 0.84
192, 217 2072.65, 2324.91 -0.051 0.184 0.828 0.848 0.838
191, 218 2062.55, 2335.01 0.03 0.215 0.82 0.82 0.82
191, 216 2062.55, 2314.81 0.051 0.21 0.804 0.824 0.814
191, 217 2062.55, 2324.91 0.071 0.222 0.792 0.822 0.807
190, 218 2052.45, 2335.01 0.071 0.313 0.792 0.692 0.739
190, 216 2052.45, 2314.81 0.111 0.318 0.728 0.728 0.728
190, 217 2052.45, 2324.91 0.111 0.334 0.764 0.687 0.723

For this “average HFDI” (Figure 3.6), we found an optimal cut-off value to separate fire from

background of -0.13, based on our data.

TheCO2 CIBR index is also capable of separating fire from background (Figure 3.6), albeit with

notable differences between the three study areas (Figures 3.6 and 3.7). This index also produces

some extreme outliers. Between all 500 samples, the optimal CO2 CIBR value to separate fire

from background was determined to be 0.21. As for the K-emission index, we found no statistical

ability to distinguish fire from background (Figure 3.6). For two of the test scenes, the median

index value is even (slightly) greater for the background pixels than for the fire pixels.

We tested whether fire detection could be improved by retaining all 18 HFDI combinations

separately and adding the CO2 CIBR as well, effectively calculating a data vector of length 19
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for each pixel. To evaluate the potential improvement over the averaged HFDI, we constructed

a new Random Forest classifier using the 500 labeled test pixels. After executing a 10-fold cross-

validation (60/40 split of the labeled samples in training and test sets) we determined a classi-

fication accuracy of 0.85 (std: 0.02) for the mean HFDI and 0.87 (std: 0.02) for the combined

multi-HFDI-plus-CIBR classifier.

3.5.2 Temperature retrieval

The need for two separate background components was confirmed as we found that SWIR

spectra from the “fire scar” and “vegetation” classes were quite distinct (Figure 3.8a). The dis-

tinction between the two classes was most pronounced in the shorter-wavelength SWIR region

between 1400 and 1800 nm, while they vary much less in the longer-wavelength SWIR region

above 1900 nm. For each study case, we used the sample-averages of the “fire scar” and “vegeta-

tion” spectra as reflective endmembers.

With a single emitted component (corresponding to three independently fitted parameters p,

T, and pveg), we found that the fit of fire spectra was often unsatisfactory. We therefore added

a second temperature component (five independently fitted parameters, p1, T1, p2, T2, and pveg),

which greatly improved the result. There was no justification for adding a third temperature

component.
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Figure 3.8: Example spectra for T-retrieval. a) sample spectra from vegetation and fire scar classes (green and
brown), and average spectra (green, red-orange, black). b) to f) Examples of temperature and fractional area
fit to individual Hyperion radiance spectra. b) and c) illustrate unsatisfactory fit in pixels with large reflective
radiance contribution in the lower SWIR region, or due to data anomalies. d) to f) illustrate very good fit. In d)
and e), even small fractional active fire areas are clearly distinct from pure vegetation spectra (green curve).
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Figure 3.9: Burning areas of the Crazy and Boundary study sites: Temperature of the largest active fire fraction
T1 (left) and total fractional fire area p1+p2 (right). The fire temperature map shows the most intense flaming
combustion in bright colors and the pixels in which the largest fire contribution is from smoldering or other
low-intensity fire in darker colors. The most intense fire front is represented by high fire temperatures on the
left and high fractional areas (dark pixels) on the right. In contrast, low fire temperatures (dark tones) on the
left combined with large fractional areas (dark tones) on the right would correspond a pixel that is for a large
part affected by low-intensity combustion.
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Typically, the fit to the measured spectra was excellent, such as in cases of pixels that are

dominated by a mix of vegetation and fire scar plus either a very small fraction of relatively

high-temperature fire (Figure 3.8d) or a slightly larger fraction of low-temperature fire (Figure

3.8e). Both these cases yield spectra that are essentially identical to pure background spectra in

the shorter-wavelength part of the SWIR range, but deviate strongly in the longer-wavelength

part. Some pixels with saturation effects are also reasonably well fitted (Figure 3.8f). In contrast,

Figures 3.8b) and c) illustrate cases of relatively poor curve fit.

The retrieved temperature T1 that corresponds to the larger active fire fraction and the total

fractional fire area (p1+p2) are plotted in Figure 3.9 for the Crazy and Boundary fire scenes. (We

labeled the indices so that p1 > p2.)

3.6 Discussion

The performance of the three fire detection methods varies. Using K-emission, we were unable to

tell fire and background pixels apart. Amici et al. (2011), on the other hand, approach the method

from a different angle and only look at pixels for which AKBD values are exceptionally high,

which indeed, in one of the two sample scenes they examine (the 2007 Witch fire in California),

enables them to detect a fire signal using Hyperion data. Following their approach, we also found

an areawithin the the 2004 Boundary fire scene for which outliers in the AKBDmetric correspond

to locations of intense combustion (Figure 3.7, bottom row). However, the same does not apply to

the 2004 Crazy or the 2009 Wood River fire, even though the Crazy fire scene contains the most

intense fire across our three study sites.

Thus, even though wewere able to reproduce the detection of a weak K-emission signal in one

of three study cases, we cannot consider the K-emission method useful for fire detection in the

Alaska boreal forest. It should be pointed out that the 2007 Witch fire was a very high intensity

event that burned in chaparral shrubland near Escondido, California. This eco-region has a fire

regime very different from that of a boreal forest fire in a black spruce dominated ecosystem.

In the Alaska case, a large percentage of the biomass consumption comes from the sub-surface

layers of organic matter (Randerson et al. 2006) rather than from quick-burning surface fuels.
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Furthermore, the absence of a K-emission signal even in the highest-intensity fire pixels of the

Crazy fire may be related to the presence of large amounts of smoke in the scene. The active fire

pixels of the 2009 Wood River fire were generally of low intensity, and a signal was not expected

in this case. The main factors limiting the usefulness of K-emission with Hyperion are the much

coarser spatial resolution of the satellite-borne sensor, which leads to a lowered sensitivity, and

the strong sensor noise.

The carbon dioxide CIBR, which is based on an absorption feature, shows a clear statistical

difference between fire and background pixels. Fire areas are discernible in a map of CO2 CIBR

values (Figure 3.7), but on a background of substantial noise. The Crazy fire test scene is par-

ticularly hard to map using the CO2 CIBR, and the plot suggests that areas containing smoke

or clouds, and to a lesser degree burn scars, introduce a large number of false detections. The

optimal CO2 CIBR threshold to distinguish fire from background appears to vary from scene to

scene. Zooming into known fire areas, we see that high CIBR values follow the outline of the fire

front (Figure 3.7, bottom row). The CO2 CIBR quantifies the proportion of emitted radiation in

the measured spectral radiance value at a specific wavelength. To make it more useful standing

on its own the image would have to be de-striped and cloud-masked, which would come at the

cost of losing further detail in the signal.

An average of 18 HFDI band combination produces crisp fire maps with HFDI values that

appear to correlate with fire intensities. Averaging helps reduce the noise inherent in Hyperion

data. The Hyperion-specific averaged HFDI provided a reasonably stable detection threshold

that did not vary greatly between three fire events in the Alaska boreal forest. A downside of

band-averaging is that it effectively lowers the spectral resolution of the imaging spectrometry

data, from 10 nm to 60 nm (six shorter-wavelength bands) and 30 nm (three longer-wavelength

bands). Even a 60 nm bandwidth is still relatively small compared to common satellite-borne

multispectral sensors (for example Landsat 8 OLI SWIR band 7: 187 nm). Essentially, opting for a

band-averaged index rather a than single-band index reflects a necessary choice to avoid noisy or

sub-optimally located Hyperion bands. In general, a normalized-difference based index is likely

to be less susceptible to spectral resolution than an index that relies on an individual spectral

feature. Opportunities for better fire detection using the HFDI-type normalized detection indices
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will require improved performance of future sensors in the 2̃400 - 2500 nm range, beyond the

end of Hyperion’s range of calibrated channels, and reduced noise across the SWIR range, rather

than a finer spectral resolution.

Dennison and Roberts (2009) indicate that an HFDI-type index does not increase monotoni-

cally with fire intensity for very hot fires (T >1400 K), for which the emitted radiance at the shorter

wavelength (approximately 2060 nm) will begin to exceed the radiance at the longer wavelength

(approximately 2400 nm). For Hyperion, however, we do not find non-saturated pixels with us-

able data in this temperature range and can therefore assume that for our data, higher HFDI

values correspond to higher fire intensities. The HFDI values found in the Crazy and Bound-

ary fire data appear to be consistent with this principle (Figure 3.7): The HFDI reveals rich fire

intensity patterns, which are an improvement over the result we obtained from supervised classi-

fication. A mixed approach that relies on all 18 HFDI band combinations plus the CO2 CIBR was

able to achieve a small improvement in classification accuracy, but at the cost of losing a single

meaningful scalar index.

The linear spectral mixture analysis yields an overall excellent result for retrieving active fire

temperatures based on two constant background components (vegetation and fire scar) and two

active fire components whose temperatures were allowed to vary freely from pixel to pixel. Mea-

sured spectra with very small fractional areas (< 1%, that is, 5 - 9 m2) of high-temperature active

fire on a mixed vegetation and fire scar background were fitted extremely well (Figure 3.8d). The

same is true for pixels that contain a somewhat larger fractional area of low-temperature fire

(Figure 3.8e). Even pixels with 20 % to 25 % (approximately 200 m2) of high-intensity active fire

(Figure 3.8e) were modeled quite well even though the Hyperion sensor saturates in the SWIR

region at such signal intensities. Typical temperatures for high-temperature fire components

ranged from 800 K to 900 K. This value, which is not very high for wildfire, is limited by the satu-

ration behavior of the Hyperion sensor: Beyond 900 K, the spectral radiance contribution in the

longer-wavelength part of the SWIR region (>1900 nm) saturates the sensor; a meaningful tem-

perature retrieval becomes impossible. The low temperatures of fire components were typically

at values of 500 K to 600 K, which falls within the region of smoldering combustion of organic

forest soil matter (Rein et al. 2008). The model therefore provides a pixel-by-pixel characteriza-
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tion of fire behavior properties. We were able to map hotter and cooler fire areas, and regions in

which active fire occupies a larger or smaller fractional pixel area (Figure 3.9).

There are two limitations for temperature retrieval in our study: First, pixels with severe SWIR

data anomalies such as drop-outs and some saturation behavior cannot be fitted well (Figure

3.8b). Second, some fire pixels are dominated by a reflected radiance component that exceeds the

typical vegetation-type background at the shorter-wavelength end (1400 - 1800 nm). These pixels

contain a source of reflected solar radiation that was not adequately captured by our choice of

an averaged vegetation background spectrum (Figure 3.8c). Due to the small size of the study

area (and the narrowness of the Hyperion swath) we considered it sufficient to use per-scene

constant vegetation and fire scar endmembers; the unsatisfactory fit of some pixels highlights

the limitation of this assumption. We could overcome it by applying a contextual selection and

averaging mechanism to determine pixel-by-pixel background contributions. Such background

contributions should continue to further distinguish between fire scar and vegetation and would

provide improved information on the fractional areas of a pixel that are unburned versus already-

burned.

3.7 Conclusions, recommendations, and future work

We have demonstrated the usefulness of a Hyperion-type hyperspectral sensor to detect, map,

and characterize active fire in Alaska’s boreal forest as well as the land cover changes introduced

by fire (fire scar and unburned vegetation). We detected both high-intensity flaming fire and

low-temperature combustion likely associated with smoldering fire. Sensors like Hyperion have

great potential to further identify classes of fuel type (Dennison et al. 2006) and condition, as

well as the properties of both fresh and older burn scars. One area for future research includes

fire severity, which, in the Alaska boreal forest, is associated with the degree to which the sub-

surface layers of organic matter are consumed (Lentile et al. 2006). Such work requires a field

component.

Future instruments are already being designed with an emphasis on enhanced SNR, as is the

case for HyspIRI at 500:1 (2200 nm) (Lee et al. 2015) and EnMAP at >150:1 (SWIR) (Kaufmann
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et al. 2006) compared to Hyperion’s SNR of 38:1 at 2125 nm (Pearlman et al. 2003). Areas of active

combustion represent a larger percentage of total pixel area as spatial resolution is increased,

so finer spatial resolutions could make the detection of weak spectral features, such as the K-

emission line, more likely. Such a requirement, though, is in conflict with a shorter repeat interval,

which would be highly desirable for monitoring relatively rapid landscape processes such as a

change in pre-fire fuel conditions or fire effects. Similarly, improved saturation behavior needs to

be considered as a trade-off with sensor sensitivity (Realmuto et al. 2015). Design goals such as a

short recovery lag before saturated sensor elements are operational again or a well-documented

signature of sensor saturation are likely to be preferable to a high saturation threshold on a sensor

that is incapable of picking up weak heat signals. We hope that new and enhanced satellite-borne

imaging spectrometers will become available in the future as they would expand and improve our

ability to understand wildfire.
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Chapter 4

SENSITIVITY CONSIDERATIONS IN FIRE DETECTION AND SUB-PIXEL FIRE

TEMPERATURE RETRIEVAL WITH SUOMI-NPP VIIRS1

Abstract

The sensitivity of fire detection performance to sensor zenith angle was investigated for the Vis-

ible Infrared Imaging Radiometer Suite (VIIRS). The test case was a dataset consisting of 146

scenes covering 16 days of acquisition over a large boreal forest fire in north-eastern interior

Alaska. Both the global VIIRS 375 m I-band product and the VIIRS I-band Fire Detection Algo-

rithm for High Latitudes (VIFDAHL) were examined. In either case, the fire detection likelihood

falls off at sensor zenith angles above approximately 50°. VIFDAHL detects more active fire loca-

tions than the global product at zenith angles between 20° and 40°, whereas at angles >50°, where

the detection performance of both products falls off, the global product performs somewhat bet-

ter than VIFDAHL. Furthermore, active fire temperatures and fractional fire areas were retrieved

using VIIRS 750 m M-band data. The resulting temperature range from 500 K to >1100 K, with

fractional areas between 0.1 % and 3 % of a pixel.

4.1 Introduction

Whenever we use or evaluate a satellite-based fire detection product (e.g. Csiszar et al. 2014;

Giglio et al. 2003, 2016; Schroeder et al. 2014; Waigl et al. 2017), it is useful to keep its potential

limitations in mind: To what extent does the product characterize fire adequately and without

bias? If there are biases and sensitivities, what parameters and properties are affected? What

further processing steps could be taken to enhance fire characterization? This chapter builds

on our previous work on global and Alaska-specific (VIFDAHL) active fire detection products

1Waigl C. F. et al., manuscript in preparation (formatted for submission to the International Journal of
Applied Earth Observation and Geoinformation)
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using at-sensor spectral radiance data from the Visible Infrared Imaging Radiometer Suite (VIIRS)

(Waigl et al. 2017). It addresses the following two topics:

• the scan angle dependency of VIIRS-based fire detections,

• the feasibility of sub-pixel active fire temperature retrieval with VIIRS data.

Sensitivity considerations are integral to any detection methodology. Fire detection limits are

typically evaluated using case studies with available high-resolution proxy-data complementing

the detection algorithm of interest (Giglio et al. 2003). Schroeder et al. (2008) validated fire de-

tections from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Wildfire

Automated Biomass Burning Algorithm (WF_ABBA) based on data from the Geostationary Op-

erational Environmental Satellite (GOES) using higher resolution data acquired by the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) or Landsat’s Enhanced The-

matic Mapper (ETM+). In a different type of sensitivity analysis, Schroeder et al. (2010) indicated

that retrievals of Fire Radiative Power (FRP) fromMODIS and GOES/WF_ABBAmay be sensitive

to biomass density as well as affected by errors caused by the effects of the point-spread function.

Regarding active fire detection, a dependency on sensor look angle can be expected: Data

acquired at large angles is affected to a greater degree by atmospheric effects and topography.

Furthermore, the footprint of a pixel on the ground increases, so a fire source is likely to occupy a

smaller percentage of the pixel. Boles and Verbyla (1999) found that for the Advanced Very High

Resolution Radiometer (AVHRR), a sensor in the 1-km class of spatial resolution, fire detection

likelihoods did not vary very much with scan angle.

Uncertainty and sensitivity considerations are also particularly relevant in sub-pixel fire tem-

perature and fractional area retrieval studies. Sub-pixel fire temperature retrieval was first devel-

oped in the 1980s for AVHRR, a sensor on several polar-orbiting weather satellites operated by the

United States National Oceanic and Atmospheric Administration (NOAA) (Dozier 1981; Matson

and Dozier 1981). The approach is widely referred to as the Dozier method. It relies on measuring

spectral radiance in two bands that are sensitive to the emitted thermal background, and operate

in sufficiently distinct wavelength ranges to distinguish between high-temperature sources and
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non-fire background. This method is conceptually similar to fire (or lava) temperature retrieval

in hyperspectral data using a linear spectral mixture model (Abrams et al. 2013; Dennison et al.

2006): measured radiance data is used to fit model parameters which include active fire temper-

atures and the fractional area of a pixel occupied by fire at that temperature. In multispectral

sensors such as AVHRR, MODIS or GOES the fire-sensitive band is typically a mid-infrared (MIR)

band with a central wavelength of approximately 4 μm, while a thermal infrared (TIR) band cen-

tered at approximately 11 μm is used for background detection. The Dozier method is an integral

part of WF_ABBA for geostationary satellites (Prins and Menzel 1994) and was fundamental to

the design of the Bi-spectral Infrared Detection (BIRD) satellite system (Briess et al. 2003). The

method has been extended to other sub-pixel retrieval problems, such as snow properties (Dozier

and Painter 2004).

Giglio and Kendall (2001) described the limitations of Dozier’s two-component approach.

They found that for MODIS, at and above a realistic limit for fractional pixel area of 0.5% of a

pixel’s size, errors in retrieved fire temperature and in retrieved fire pixel area up to 100 K and

50%, respectively, are possible. But for smaller fractional areas, errors quickly overwhelm the re-

trieval result. Furthermore, at larger fractional pixel areas occupied by fire, the MODIS 3.959 µm

MIR band 21 saturates at a fractional active fire area of approximately 3% of a pixel, so the window

for a meaningful application of the Dozier method to MODIS data is rather narrow. The situation

is even less favorable for AVHRR, which has a MIR channel more prone to saturation. Similarly,

Giglio and Justice (2003) indicated that wavelength selection can have a rather dramatic effect on

the retrieved active fire temperatures and fractional pixel areas, based on data from MODIS and

AVHRR.

Sub-pixel fire characterization is not only applied to fire temperature. Schroeder et al. (2010)

combined active fire temperature retrieval in MODIS (and WF_ABBA) with a study of the asso-

ciated FRP. Peterson et al. (2012) (see also Peterson and Wang 2013) calculated FRP on the basis

of physical principles (the Stefan-Boltzmann equation) instead of the empirical formula used in

the MODIS fire products (Kaufman et al. 1998).
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Figure 4.1: Within the rectangular area, all fire detections from the global VIIRS I-band product between July
9, 2017 and July 24, 2017, are shown in red

Other uses of sub-pixel active fire detection include a Dozier-like method applied to ~30 m

resolution Landsat data for the detection of sub-surface coal seam fires with TM and ETM+ data

(Prakash and Gupta 1999) and the construction of a spectral mixture model based on the full 36-

band MODIS spectrum (Eckmann et al. 2008). Similarly, up to 8 bands of VIIRS 750 m (“moderate

resolution”) M-band data has been used to retrieve fire temperatures (Liew et al. 2015), but results

appear to have a strong sensitivity to the addition or omission of individual TIR bands.

In this work, we also use VIIRS M-band data for sub-pixel fire retrieval, but focus on two

components that are as close as possible to Dozier’s original mode: one mid-infrared and one

thermal infrared band.

4.2 Study area and data used

Our study area consists of a cluster of wildfires that were ignited by lightning in the remote area

along the Alaska/Canadian border north and south of the Porcupine River between late June
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and early July 2017. We selected this site because it experienced sustained wildfire that was

active over an extended period of time (one full VIIRS repeat cycle of 16 days), with limited cloud

cover and little variation in vegetation cover and topography. The site is moderately rugged and

inaccessible by road; the vegetation is dominated by black spruce. Other than the protection of a

small number of cabins and archaeological sites, including the historical site of Rampart House

located very close to the border, there was little fire suppression activity. The study area is located

between 66.9°N and 67.7°N latitude, 140.5°W and 142.0°W longitude (Figure 4.1)

The time interval of the study extended from July 9, 2017 to July 24, 2017 (UTC). During

this 16-day interval, VIIRS executed 227 orbits. The full set of corresponding VIIRS Sensor Data

Record (SDR) datasets, which contain at-sensor corrected radiance raster data, was downloaded

from the direct readout downlink station operated by the Geographic Information Network of

Alaska at the University of Alaska Fairbanks (UAF), which receives and processes VIIRS data to

SDR level. The dataset consisted of 146 scenes that overlap with the study area (Table 4.2), each of

them a granule that corresponds to ~85 sec of data acquisition, with a swath width of ~3040 km.

We used band M13, centered at 4.05 μm and band M15, centered at 10.763 μm (Cao et al. 2014).

In addition to VIIRS SDR data, we also downloaded all VIIRS I-band (375 m) global fire de-

tections (Schroeder et al. 2014) from NASA’s Fire Information for Resource Management System

(FIRMS) [https://earthdata.nasa.gov/firms] for the study area and time interval.

4.3 Methods

4.3.1 Fire detection

For the fire pixels provided by the global VIIRS I-band (375 m) active fire product (Figure 4.1),

we determined the corresponding original granule by matching the location and the acquisition

time stamp, and counted the detections associated with each granule. We also determined the

sensor zenith angle at the center of the study area for each granule from the granule’s geolocation

data. The variation of the sensor zenith angle across our small study areas is <1°, so we considered

it sufficient to use the study area center to associate global VIIRS I-band (375 m) fire detections

with sensor zenith angles.
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Figure 4.2: Sensor look angle (pink) and sensor zenith angle (red). The first is a property of the sensor design,
the second depends on the sensor look angle and the earth’s radius.

We also processed all 146 granules in the study set with VIFDAHL, which provided a second

set of fire pixels, separated into high- and low-intensity detections. Our implementation of VIF-

DAHL simultaneously extracts the sensor zenith angle associated with each fire pixel from the

geolocation dataset.

4.3.2 Sensor angle statistics

The VIIRS sensor scans the earth at a scan angle (or sensor look angle, both defined with

reference to nadir) of ±56.28° from nadir (Cao et al. 2014). In our data, this translates in sensor

zenith angles that vary from 0° to just over 70° on either side of nadir. (The zenith angle is larger

than the scan angle because of the curvature of the earth surface, see Figure 4.2.) Retaining all

granules with at least one fire detection from either VIFDAHL or the global VIIRS I-band (375 m)

product, we examined the distribution of the zenith angles associated with fire detections.
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Figure 4.3: Planck blackbody spectral radiance curves. The approximate locations of the MIR (4 μm) and TIR
(11 μm) bands are marked with vertical lines.

4.3.3 Temperature retrieval

A body at a temperature T with a wavelength-dependent emissivity ελ emits electromagnetic

radiation with a spectral radiance that follows Planck’s Law:

Lλ = ελ
C1

λ5

1

π (e
C2
λT − 1)

= ελ
K1(λ)

e
K2(λ)

T − 1
= ελB(λ, T) (4.1)

with

constants C1 = 2π h c2 and C2 = hc/kB

wavelength-dependent parameters K1 = C1/π λ5 and K2 = C2/λ

Planck’s constant h = 6.626 070 04× 10−34 m2kg/s

Boltzmann’s constant kB = 1.380 648 52× 10−23 m2kg/(s2K)

speed of light c = 2.997 924 58× 108 m/s .

In the following we will assume an emissivity value of 1 as a first approximation.
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If the footprint of a pixel consisted of two homogeneous sub-pixel areas – a fractional area

p that is burning at a flaming temperature of T (e.g., 1000 K) and a background area 1 - p at the

land surface temperature (in the vicinity of 300 K) – the spectral radiance emitted by the mixed

pixel would be the sum of the two contributions:

Lλ,pixel = τλp B(λ, Tfire) + (1− p) Lλ,b (4.2)

with

Lλ,pixel : observed radiance of a pixel

LLλ,b : observed radiance of the background

τλ : upward atmospheric transmittance

p : fractional area of the pixel occupied by fire (between 0 and 1)

B(λ, Tfire) : Planck spectral radiance curve at the fire temperature

In Equation 4.2, the first (“fire”) term is corrected with the wavelength-dependent transmit-

tance τλ, and Tfire stands for a real (kinetic) temperature. The background radiance term Lλ,b

represents the measured at-sensor spectral radiance of the background, and the corresponding

temperature Tb is a brightness temperature value.

The concept underlying Dozier’s method is that the active fire component of the mixed pixel

contributes a higher spectral radiance in the MIR (4 μm) than in the TIR (11 μm), and that the

opposite is true for the cooler background component (see Figure 4.3). For a single band, the

measured spectral radiance could result from a small fire area burning at a high temperature,

or a larger fire area burning at a lower temperature. If, however, we take the data from both a

MIR and a TIR band, only one fire temperature and fractional area combination fits the measured

radiance according to Equation 4.2. The values for K1 and K2 resulting from the band M13 and

M15 wavelengths are summarized in Table 4.1.
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Table 4.1: Parameters for VIIRS M-bands used in Dozier retrieval

VIIRS band Central wavelength
(μm)

K1
W/(m2 μm sr)

K2
(K)

M13 4.05 109308 3552.53
M15 10.763 824.630 1336.78

4.3.4 Atmospheric correction

For the atmospheric transmittance value in Equation 4.2 we used wavelength-dependent val-

ues from Giglio and Schroeder (2014) in the MIR (band M13) and a constant value of 0.86 (e.g.

Giglio and Kendall 2001). These published values are based on the MODTRAN radiative transfer

model (Berk et al. 2006).

4.3.5 Uncertainty estimation

We could solve the two equations 4.2 (one for the MIR band and one for the TIR band) nu-

merically for each fire pixel to fit values of p and Tfire. This, however, would not provide us

with any information about the uncertainties inherent in fire temperature retrieval. We there-

fore use a slightly different approach. Equation 4.2 has the form of a forward model, in which

the measured data d = (LMIR,pixel, LTIR,pixel) are expressed in terms of model parameters m =

(p, Tfire, Tb,MIR, Tb,TIR). Such a model can be solved using inverse modeling (e.g. Tarantola 2005).

We express the error between the calculated model and the measured data for set of model pa-

rameters m via a misfit function F(m), which incorporates both model and data errors.

The method allows for great flexibility to incorporate sources of uncertainties or error. As

a very simple approximation, the only type of data error we took into consideration was the

uncertainty in the VIIRS SDR brightness temperatures. Based on the range of values offered in

Cao et al. (2014), we used the values of 0.5 K for band M13 and 0.2 K for band M15. The misfit

function is used to calculate a Bayesian posterior probability distribution function:

S(m) = K exp (−F(m)) (4.3)
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The normalization constant K does not have to be evaluated, as we can sample relative prob-

abilities with a Monte Carlo method according to the Metropolis-Hastings (e.g. Hastings 1970;

Metropolis et al. 1953; Tarantola 2005, ch. 2.3). We sample the distribution of model parameters,

the spread of which is driven implicitly by the uncertainties incorporated. In each step of the

Monte Carlo random walk, a new set of model parameters is randomly selected, and then ac-

cepted or not by the rules of the Metropolis algorithm, depending on the posterior distribution.

New model parameters are randomly drawn based on a set of prior distribution. The method is

not very sensitive to the choice of these priors. For Tfire we selected a uniform distribution of

temperatures between a minimum of 500 K and a maximum of 1500 K. For background bright-

ness temperatures in both bands we selected a normal distribution centered on 300 K value with

a standard deviation of 20 K. Last, because the fractional pixel area is by its nature a ratio (or

percentage), a reasonable choice for a prior distribution is a beta distribution (Kruschke 2014,

Chapter 5). As we expect modeled pixel areas <5%, a suitable beta function is beta(2, 40), which

has a sharply defined peak around 0.025.

4.4 Results and discussion

4.4.1 Zenith angle dependency of fire detection

We found that out of the 146 VIIRS scenes that overlap with the study area, 62 granules have

at least one fire detection from either the VIIRS I-band (375 m) product or VIFDAHL (Table 4.2).

Across this dataset, the number of total global VIIRS I-band detections (3252) and the VIFDAHL

detections (3247) are almost identical. Scenes with fire detections are frequently associated with

large sensor zenith angles: for 21 out of the 62 granules the zenith angle at the study site exceeds

60° (Figure 4.4). Regarding the fire pixel counts themselves, we found higher counts for VIFDAHL

compared to the global VIIRS I-band product at sensor zenith angles between 20° and 40°, and

higher counts for the global product at angles >60° (Figure 4.5, a) and c)). Normalizing fire pixel

counts by the number of scenes in each zenith angle bin (Figure 4.5, b) and d)), effectively dividing

the histograms (Figure 4.5, a) and c)) by the one in Figure 4.4, it became clear that the fire detection
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efficiency falls off sharply at angles >60° for both products. The fall-off is more pronounced for

VIFDAHL.

Table 4.2: List of 62 VIIRS SDR granules used in this study with non-zero fire detection counts for at least one
method (VIIRS I-band or VIFDAHL). Totals are 3252 detections from the global VIIRS I-band product and 3247
from VIFDAHL.

VIIRS VIIRS Date Time Node Sensor VIIRS-I VIFDAHL
zenith

orbit granule ID (UTC) (UTC) angle count count

29525 NPP001802682471 2017-07-09 10:30 desc 59.2° 0 1
29526 NPP001802743069 2017-07-09 12:11 desc 2.2° 21 4
29527 NPP001802803668 2017-07-09 13:52 desc 51.4° 0 3
29531 NPP001803040941 2017-07-09 20:28 asc 35.7° 6 0
29532 NPP001803101539 2017-07-09 22:09 asc 32.7° 51 40
29540 NPP001803595716 2017-07-10 11:52 desc 16.6° 0 1
29540 NPP001803596569 2017-07-10 11:54 desc 16.3° 2 0
29545 NPP001803834696 2017-07-10 18:31 asc 65.3° 13 8
29546 NPP001803893587 2017-07-10 20:09 asc 43.7° 90 80
29546 NPP001803894441 2017-07-10 20:10 asc 43.0° 0 1
29546 NPP001803954186 2017-07-10 21:50 asc 20.0° 314 353
29548 NPP001804014784 2017-07-10 23:31 asc 65.8° 93 74
29554 NPP001804387764 2017-07-11 09:52 desc 69.1° 46 0
29555 NPP001804448362 2017-07-11 11:33 desc 29.7° 14 12
29556 NPP001804508961 2017-07-11 13:14 desc 37.8° 2 3
29557 NPP001804627597 2017-07-11 16:32 asc 70.2° 1 0
29559 NPP001804687342 2017-07-11 18:12 asc 67.1° 18 17
29560 NPP001804747087 2017-07-11 19:51 asc 50.1° 122 116
29560 NPP001804806832 2017-07-11 21:31 asc 5.8° 285 370
29561 NPP001804867431 2017-07-11 23:12 asc 60.6° 84 28
29569 NPP001805361607 2017-07-12 12:55 desc 28.1° 15 2
29574 NPP001805659479 2017-07-12 21:12 asc 8.6° 17 21
29575 NPP001805720077 2017-07-12 22:53 asc 54.2° 8 5
29582 NPP001806153655 2017-07-13 10:56 desc 49.8° 6 0
29583 NPP001806214254 2017-07-13 12:37 desc 16.3° 4 0
29584 NPP001806273999 2017-07-13 14:16 desc 57.4° 2 1
29585 NPP001806333744 2017-07-13 15:56 desc 69.1° 3 1
29586 NPP001806392635 2017-07-13 17:34 asc 69.4° 2 2
29587 NPP001806452380 2017-07-13 19:13 asc 59.0° 39 35
29588 NPP001806512125 2017-07-13 20:53 asc 21.6° 213 197
29589 NPP001806572724 2017-07-13 22:34 asc 46.3° 218 146
29596 NPP001807006302 2017-07-14 10:37 desc 57.1° 116 11
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Table 4.2 Continued.

VIIRS VIIRS Date Time Node Sensor VIIRS-I VIFDAHL
zenith

orbit granule ID (UTC) (UTC) angle count count

29597 NPP001807066900 2017-07-14 12:18 desc 2.6° 6 7
29598 NPP001807127499 2017-07-14 13:59 desc 53.0° 0 8
29599 NPP001807186390 2017-07-14 15:37 desc 67.9° 0 2
29600 NPP001807246135 2017-07-14 17:16 asc 70.1° 3 5
29601 NPP001807305027 2017-07-14 18:55 asc 62.1° 76 83
29602 NPP001807364772 2017-07-14 20:34 asc 32.5° 194 233
29603 NPP001807425370 2017-07-14 22:15 asc 36.4° 367 414
29611 NPP001807858948 2017-07-15 10:18 desc 62.9° 158 10
29612 NPP001807919547 2017-07-15 11:59 desc 11.9° 27 30
29613 NPP001807980145 2017-07-15 13:40 desc 47.5° 8 9
29614 NPP001808039037 2017-07-15 15:18 desc 66.3° 0 5
29614 NPP001808039890 2017-07-15 15:19 desc 66.4° 0 4
29616 NPP001808157673 2017-07-15 18:36 asc 64.6° 22 22
29616 NPP001808158527 2017-07-15 18:37 asc 64.4° 0 4
29617 NPP001808217418 2017-07-15 20:15 asc 41.2° 134 155
29618 NPP001808278017 2017-07-15 21:56 asc 24.3° 273 431
29619 NPP001808338615 2017-07-15 23:37 asc 67.4° 9 10
29632 NPP001809130663 2017-07-16 21:37 asc 10.5° 29 45
29632 NPP001809191262 2017-07-16 23:18 asc 62.5° 2 3
29659 NPP001810776211 2017-07-18 19:20 asc 57.8° 2 2
29660 NPP001810835956 2017-07-18 20:59 asc 17.5° 23 49
29661 NPP001810896555 2017-07-18 22:40 asc 49.1° 21 34
29668 NPP001811330133 2017-07-19 10:43 desc 54.8° 4 0
29673 NPP001811628858 2017-07-19 19:01 asc 61.2° 2 3
29673 NPP001811688603 2017-07-19 20:40 asc 29.1° 34 52
29674 NPP001811749201 2017-07-19 22:21 asc 39.9° 16 50
29687 NPP001812481504 2017-07-20 18:42 asc 63.8° 11 12
29688 NPP001812541249 2017-07-20 20:22 asc 38.5° 2 0
29688 NPP001812601848 2017-07-20 22:03 asc 28.6° 12 10
29689 NPP001812662446 2017-07-20 23:44 asc 68.8° 12 13

It is at first glance surprising that we did not find a larger number of VIFDAHL detections, as

in our previous study (Waigl et al. 2017) VIFDAHL consistently outperformed the global product.

This result is mitigated whenwe group the fire pixel counts by node: In VIIRS, the ascending node

corresponds to mid-day overpasses, while late evening and early morning acquisitions take place
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Figure 4.4: Distribution of zenith angles at the center of the 62 VIIRS scenes with nonzero VIFDAHL detections.

Figure 4.5: VIIRS I-band fire detection counts as a function of satellite zenith angle.
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on a descending node. We counted 2818 global VIIRS I-band daytime detections compared to 3123

VIFDAHL daytime detections; conversely, for the evening, night and early morning detections,

VIFDAHL yielded only 114 compared to 434 in the global product. The data used originally to

tune VIFDAHL contained more day than night scenes, and largely scenes acquired at small zenith

angles, and VIFDAHL performs better on ascending-node data and zenith angles <50°.

Another aspect of the fire detection comparison is linked to data removal at the granule edge

and bowtie overlaps (that is, the geometric growth of the pixel footprint at large scan angles).

VIIRS I-band and M-band SDR data undergoes a bowtie deletion scheme which partially, but not

completely, removes pixel duplication due to the bowtie effect (Hillger et al. 2015; Hillger et al.

2014). Our implementation of VIFDAHL quite aggressively removes all residual bowtie overlaps

as well as any duplication of detection location at adjacent granule edges. Example scenes for

which the VIIRS I-band product retains overlapping detections eliminated by VIFDAHL are the

two granules from orbit 29688 in Table 4.2.

4.4.2 Fire temperature and partial pixel area retrieval

To carry out sub-pixel temperature and fractional area retrieval, we selected a sample scene

from an active phase of the fire, acquired on July 13 at 20:53 UTC (197 VIFDAHL detections).

This is a daytime scene acquired on an ascending node, and at a moderate sensor zenith angle

of approximately 21°. The 197 VIFDAHL detections are located within 106 M-band pixels (with a

resolution of 750 m at nadir) (Figure 4.6). Four I-band pixels are nested within each M-band pixel.

These 106 M-band pixels formed the basis for the application of Dozier’s method (Equation

4.2). For the TIR transmittance parameter in the thermal infrared, Giglio and Kendall (2001) used

a value of 0.86. We use the same value for VIIRS as an approximation, as the spectral locations

of MODIS TIR band 31 and VIIRS band M15 are close (Cao et al. 2014). In contrast, VIIRS band

M13 is positioned at the very edge of its atmospheric window at a central wavelength of 4.05

μm (Figure 4.7 a)), where the atmospheric transmittance is already reduced. We therefore turned

the transmittance values provided by Schroeder and Giglio (2016), using model output based on

MODTRAN (Figure 4.7 b)). They show that even at nadir, the atmospheric transmittance only
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Figure 4.6: VIIRS MIR spectral radiance for one example scene (2017-07-13 20:53 UTC / 12:53 AKDT) with 197
VIFDAHL detections. a) Band I4. b) Band M13. c) Band M13 with VIFDAHL detections overlaid in yellow
(high intensity) and orange (low intensity). The VIFDAHL detections map very well to the the M13 brightness
temperature plot. The Porcupine River is marked in blue.

Table 4.3: Sample results of M-band sub-pixel temperature retrieval, sorted by fractional pixel area occupied
by fire. Temperatures are given in K, and spectral radiances in W/(m2 μm sr).

Tb Tb Spectral radiance Spectral radiance Pixel Fire
(MIR) (TIR) (MIR) (TIR) (fraction) temperature

367.4 291.8 7.0 8.5 0.1% 1500
301.8 290.6 0.9 8.4 0.1% 500
308.8 291.0 1.1 8.4 0.2% 587
335.4 292.5 2.8 8.6 0.2% 814
351.0 294.2 4.5 8.9 0.3% 844
325.4 292.6 2.0 8.6 0.3% 662
351.0 295.9 4.5 9.1 0.6% 728
342.9 295.5 3.5 9.0 0.7% 668
300.9 296.2 0.8 9.1 0.7% 500
379.0 299.7 9.5 9.6 0.8% 833
390.1 302.3 12.3 10.0 1.0% 849
362.1 298.8 6.1 9.5 1.0% 712
442.3 311.3 36.0 11.4 1.0% 1129
336.5 296.1 2.9 9.1 1.1% 591
357.6 301.1 5.4 9.8 1.8% 623
323.4 297.1 1.9 9.3 1.9% 500
339.8 298.6 3.2 9.5 1.9% 555
352.0 300.4 4.6 9.7 1.9% 599
395.4 308.6 13.9 11.0 2.0% 742
419.2 313.4 23.2 11.7 2.0% 836
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322.7 298.2 1.9 9.4 2.0% 500
322.3 298.6 1.8 9.5 2.0% 500
357.4 301.8 5.4 9.9 2.1% 607
326.9 297.8 2.1 9.4 2.2% 500
345.9 300.9 3.9 9.8 2.5% 552
379.2 308.9 9.5 11.0 3.0% 636
346.8 302.5 4.0 10.0 3.2% 536
456.0 332.2 45.7 15.0 3.8% 848

barely exceeds 0.7 and falls off steeply at the swath edge. We used a transmittance value of 0.7

for the 21° MIR data.

Active fire temperature was allowed range from 500 K and 1500 K. For some pixels that were

examined, the retrieved fire temperatures in the model output took on one of these values. For

example, a low retrieved temperature with a small fractional pixel area can occur when a single

low-intensity fire detection occurs within a (larger) M-band pixel. In other pixels, a very high

fire temperature is associated with unreliable detection of fractional pixel area when one of the

bands is close to saturation. These cases represent the limits of the Dozier method. A sample of

pixels with meaningful results of the Dozier retrieval is presented in Table 4.3. For these pixels,

fractional fire areas of the order of 0.2–2% of a pixel are common; associated errors (one standard

deviation) varied between 0.2% and 0.8%. Average standard of the retrieved fire temperatureswere

9 K for low-temperature fire and approximately 27 K for temperatures of the 800–900 K range. The

background brightness temperatures, which we treated as model parameters, were distributed

around the values of 300 K in band M13 and 290 K in band M15, with standard deviations varying

between 1 K and 6 K.

In this example scene, fire temperature and fractional fire area retrieval yielded a plausible

result. Dozier’s bi-spectral model is applicable to VIIRS M-band data. At the lower detection

limit, 0.2% of a 750 m pixel corresponds to an area of about 33 × 33 m.
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Figure 4.7: Spectral response function and atmospheric transmittance for MIR bands available on VIIRS (I4,
M13) and MODIS (B21/B22), according to Schroeder and Giglio (2016). The band placement of the 750 m band
M13 leads to much greater atmospheric extinction than for the 375 m band I4 or the equivalent MODIS bands.

4.5 Conclusions

In this work, we compared fire detections from the global VIIRS I-band product with VIFDAHL.

VIFDAHL detects approximately 40% more fire pixels than the global product at sensor zenith

angles between 20° and 40°, and approximately 10% more fire pixels during mid-day acquisitions.
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However, at large sensor zenith angles >60°, and to a lesser degree for nighttime detections, the

global VIIRS I-band product performed slightly better in the selected case study. For both prod-

ucts, detection sensitivity falls off strongly at the edge of the swath.

Using a prototype VIIRS scene, we demonstrated sub-pixel fire temperature and fractional

pixel area retrieval with the MIR bandM13 and the TIR bandM15, and uncertainty analysis based

on the noise in at-sensor brightness temperature data. In future work, it will be important to take

into account a complete set of uncertainties, including, but not limited to: error in atmospheric

correction, inter-band co-registration error and geolocation error.

This study reveals the need to adjust VIFDAHL for the data acquisition geometry and night-

time detection. Adapting VIFDAHL for very large sensor zenith angles is a great opportunity to

improve fire detection in general. The adapted VIFDAHL method will enable us to take better

advantage of those VIIRS scenes acquired at large sensor zenith angle.
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Chapter 5

GENERAL CONCLUSION

We have demonstrated that improvements to the detection of low-intensity fires and fire temper-

ature retrieval for Alaska’s boreal forest fire are achievable by analyzing spectral radiance data

from satellite-based infrared remote sensing. In high latitude regions, sensors such as MODIS

or VIIRS on polar-orbiting satellites, with spatial resolutions that vary between several 100 m

and several km, acquire new imagery of any location of interest multiple times per day. During

cloud-free periods, these images serve as a good data source for monitoring forest fires. Existing

global active fire products have obvious advantages such as product stability and the availabil-

ity of long-term consistent datasets, which cannot be easily matched by algorithms tuned to the

conditions found in a small region of the globe. However, regionally adapted algorithms have

the benefit of taking into account the specific local conditions and therefore can be superior for

meeting particular fire detection and monitoring needs. This is evidenced by the VIIRS I-band

Fire Detection Algorithm for High Latitude (VIFDAHL), which we developed based on the 375 m

imaging bands of VIIRS on Suomi-NPP: We used near-simultaneous higher-resolution imagery

from Landsat to show that VIFDAHL offers better detection and mapping of low-intensity boreal

forest fires in Alaska compared to the global product.

A better understanding of low-intensity fires opens up numerous avenues both for fire man-

agement applications and scientific research. Low-intensity residual fires can persist for a long

time in the soil and cause fire re-starts under favorable weather conditions; moreover, weak sig-

nals from low-intensity fires can indicate early fire starts and therefore make it possible to detect

new fires earlier. Fire managers are therefore interested in timely maps of such detections. Data

transfer across the internet, at several gigabytes per dataset, is still to this day a factor that intro-

duces delays and the risk of data loss. Near real-time applications thus highlight the advantage

of using locally downlinked data from direct-readout systems such as the downlink station oper-
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ated by the Geographic Information Network of Alaska (GINA) at UAF, and optionally processing

them using a regionally adapted algorithm.

We also analyzed the performance of existing global active fire products in the context of

wildfires in Alaska. For real-time applications like fire monitoring, the user community benefits

from understanding at what times of the day new data will most likely be available, and how

detections are distributed across a management area such as the state of Alaska. The properties

of near real-time fire detection products depend largely on orbital parameters, sensor geometry

(swath width) and the number of sensors in operational use. Thus, even though VIIRS-based

fire detections are more numerous than MODIS detections by approximately a factor of 3, they

are clustered in narrower temporal bands around the early afternoon and early morning hours.

MODIS detections are distributed more widely across the day because they are generated by two

sensors on complementary orbits. The use of VIIRS data also requires excluding volcanic and

industrial sources of high-temperature signals.

The effectiveness of both the global VIIRS I-band (375 m) product and VIFDAHL has a depen-

dency on the sensor zenith angle at which data is acquired. The VIIRS swath is approximately

3040 km wide; therefore, zenith angles >60° are common. That far off-nadir, the pixel footprint is

much larger and the atmospheric path length is increased compared to the nadir view. We found

that the detection likelihood falls off at angles >50° for both the global VIIRS I-band (375 m) prod-

uct and VIFDAHL, with a sharper decrease for VIFDAHL. On the other hand, VIFDAHL performs

better at angles <40° where the bulk of the fire pixels are detected.

VIFDAHL offers a promising product, suited to generating input data for fire spread models

and smoke dispersion forecasting. It can also be used for the early detection of “hold-over” fires

that reside in the sub-surface layer throughout the winter, and to monitor nearly-extinguished

fires that pose a risk of re-starting large-scale burns. The next version of VIFDAHL should incor-

porate a correction factor for sensor zenith angle and potentially improved nighttime detection.

In ~1 km resolution imagery, active fire is bound to occupy only a small portion of a pixel’s

footprint. The investigation of fire properties therefore needs to operate at the sub-pixel level. We
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showed that the method pioneered by Dozier (1981) and Matson and Dozier (1981) for AVHRR

data extends to VIIRS scenes acquired over Alaskan boreal forest fires. Sub-pixel temperature

retrieval in MODIS and similar data sets requires careful attention to uncertainty. We found that

the VIIRS detection limits are similar to those described by Giglio and Kendall (2001) for MODIS,

especially at small partial pixel areas. We used a Monte Carlo method to estimate uncertainties

in model parameters and applied it to a prototype problem under simplified assumptions about

data uncertainties. The method can be generalized to other known sources of error.

In hyperspectral data, the large number of spectral bands makes it possible to determine fire

temperatures as well as the fractional pixel areas occupied by fire and background components.

Using archived Hyperion scenes acquired over Alaska wildfires from 2004 and 2009, we fitted

a spectral mixture model to the SWIR spectra acquired by the sensor and were able to achieve

an excellent correspondence between measured spectra and a model consisting of fire scar back-

ground, unburned vegetation background, and two active fire components. Typically, we found

one component at a lower temperature within the smoldering range (~500 K to 600 K), and one

within the flaming range (~800 K to 900 K). The retrieved flaming fire temperatures are here lim-

ited by sensor saturation and represent a lower bound on realistic actual flame temperatures.

We examined fire detection in imaging spectroscopy and found that a modified and band-

averaged version of the Hyperspectral Fire Detection Index is a reliable detection metric that is

well-suited for boreal forest fires. A carbon dioxide Continuum Interpolated Band Ratio index

was sensitive to fire but quite strongly affected by noise and smoke. The signal from a potassium

emission feature was just barely discernible in a small part of one out of three sample scenes,

but as far as fire detection is concerned, is more promising for airborne or in-situ measurements

rather than satellite-based remote sensing.

To take a broader view of fire remote sensing in boreal Alaska, we note that the contribution

of low-intensity residual fire to carbon consumption and fire emissions from the organic surface

layers in the boreal forest is currently not well characterized. For black spruce forests common in

Alaska, fire severity is represented by the percentage of organic sub-surface layers consumed in

a fire event (Lentile et al. 2006). We believe that fire severity could be explored using VIFDAHL
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to estimate fire residence times in the surface layers. Alternatively, direct observation of post-

fire soil conditions with hyperspectral remote sensing would be a promising direction for new

research. Both approaches should include validation with field data.

Related methods also apply to other high-temperature phenomena that occur in the region,

such as coal seam fires, tundra fires, or volcanic eruptions. In the Appendix, we explored the

topic of coal seam fire hazard mapping: the detection of locations that exhibit persistent thermal

anomalies in a time series of Landsat images. The study took place in the coal-bearing area of

Healy, AK.We successfully correlated these thermal anomalies with known locations of historical

or recurring coal seam fires.

Future work would be facilitated if a larger number of VIIRS or MODIS-type sensors in com-

plementary polar orbits were made available. Additionally, imaging spectrometers designed with

lower signal-to-noise ratio than Hyperion, a better characterized saturation behavior and a us-

able spectral range that extends at least throughout the whole SWIR region would undoubtedly

enable research to deepen our understanding of the processes that characterize boreal forest fires.
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Appendix A

COAL-FIRE HAZARD MAPPING IN HIGH-LATITUDE COAL BASINS: A CASE STUDY

FROM INTERIOR ALASKA1

Figure A.1: Remote RuggedWinter Landscape: Typical of ManyHigh-Latitude Regions. Photo Credit: National
Park Service/Ed Christensen, 2012, Unpublished.

1Published as a book chapter: Waigl, C. F., Prakash, A., Ferguson, A., & Stuefer, M. (2015). Chapter
24 - Coal-Fire Hazard Mapping in High-Latitude Coal Basins: A Case Study from Interior Alaska. In E. V.
Sokol, G. B. Stracher, & A. Prakash (Eds.), Coal and Peat Fires: a Global Perspective (Vol. 3, pp. 633–649).
Boston: Elsevier. http://dx.doi.org/10.1016/B978-0-444-59509-6.00024-7
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A.1 High latitude coal fires

A.1.1 Introduction

Coal fires are a common occurrence in most coal bearing areas of the world, as is well docu-

mented by Stracher et al. (2010; 2012; 2015) . Much has been published about coal fires in active

and abandoned coal mines (e.g. Kim 2007; Prakash et al. 1999; Prakash and Gupta 1999; Prakash

et al. 1997; Prakash et al. 2013; Stracher et al. 2009). The most intensively studied coal fires are

those that occur in tropical and temperate latitudes (Engle et al. 2011; Gupta and Prakash 1998;

Kuenzer et al. 2012; Prakash and Gens 2011). Relatively little is known about coal fires that occur

in the vast unexplored high-latitude regions of the world (Hudspith et al. 2012; Prakash et al.

2011). It is difficult to imagine that these regions, many of which have sub-zero temperatures for

well over six months a year, could have repeated occurrences of coal fires.

Some coal fires can start from mining related activities or accidents, such as from frictional

heat from machines, short circuiting, mining-induced subsidence, human negligence, or contact

of hot mining debris with coal outcrops (Prakash 2014; Stracher et al. 2009). These causes are com-

mon in mining areas and are not constrained by latitude. Spontaneous combustion, forest fires,

and lightning strikes are other common natural causes of coal fires. Of the latter, forest fires and

lightning strikes are not uncommon in high latitudes, especially in the drier regions (Dissing and

Verbyla 2003; Fauria and Johnson 2008). The phenomena of local heating and spontaneous com-

bustion warrant further discussion in the context of geographic location and geomorphological

setting of coal-rich areas.

Higher latitude areas generally witness low sun angles or solar elevation angles (solar ele-

vation angle at a particular point on the Earth is defined by the angle subtended by the tangent

to the Earth at that point and a straight line between that point and the center of the Sun (Fig-

ure A.2a). Consequently they receive low insolation or incoming solar irradiation, causing only a

gradual warming of the Earth’s surface. However, during the summer months, the higher latitude

regions have extended daylight hours (Figure A.2b). The night-time is short (and for some time

non-existent above 66.5 degrees) making it difficult for the Earth to cool down. In rugged and
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mountainous terrains, the south facing slopes particularly receive and retain more heat, raising

the general land surface temperature (LST) on these slopes. Coal outcrops and surface carbona-

ceous materials present on such south facing slopes easily warm up, increasing their chance to

catch fire by spontaneous combustion.

Figure A.2: This representation shows the Earth in relation to the incoming solar radiation during summer in
the northern hemisphere. a. High latitude areas generally have lower solar elevation angles (green) compared
to the lower latitudes (compare with the large red angle). b. Seasonal variation in daylight hours in the
northern hemisphere. On summer solstice, there is one day with 24 hours daylight at 66.5 degrees latitude. The
daylight hours continue to increase with an increase in latitude.

Much of the northern high-latitude regions are vegetated, being covered by tundra or by

boreal forests. Once a coal fire starts in such landscapes, it becomes a source for forest fires

(Prakash et al. 2011; Whitehouse and Mulyana 2004). Forest fires, even after they are put-out,

leave burn scars that have remanent heat (Figure A.3). A following cold winter season may not

be enough to bring down the LST to ambient temperatures, making the carbonaceous material

in the fire scar areas more prone to re-ignition, a phenomenon that we also document with the

following case study (Section A.2).

A.1.2 Alaskan Context

Alaska is the only high-latitude state within the United States of America, and it has vast

reserves of coal (Figure A.4). Estimates from (Flores et al. 2004) place the combined measured,

indicated, inferred, and hypothetical coal resources in three major provinces of the State at over
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Figure A.3: Burn pattern typical for wildfire in an Alaskan boreal forest, dominated by black spruce. This
photograph is of the 2013 Stuart Creek 2 fire east of Fairbanks, Alaska. The hillside in the foreground is
approximately 2 km wide. This and other photographs of the Stuart Creek 2 fire can be viewed at the Incident
Information System Website (InciWeb, 2013). Photo credit: Bureau of Land Management, 2013.

5,000 billion metric ton, which exceeds the total coal resources of the rest of the contiguous US

states by 40 percent.

Alaska is vast and poorly mapped. Over 80 percent of the geological maps available for the

State are at best 1:250,000 scale, and about 16 percent of these are based on mapping efforts prior

to 1957 (Newberry 2013, personal communication). A good spatial coverage of large scale maps

showing locations of coal outcrops and surface deposits of carbonaceous materials just does not

exist. The sparse transportation network within the State (Figure A.5) makes it uneconomical to

mine many of the known coal reserves.

Coal and other carbonaceous material remain exposed on the surface, vulnerable to catching

fire, across the vast State (Figure A.6). Delineating these coal fire hazard areas is important to

both commercial mining operators and public agencies charged with wildfire management and

suppression, who in Alaska cooperate via the Alaska Interagency Coordination Center (2014).

Remote sensing offers the only feasible way tomap these exposures and delineate coal fire hazard

areas.
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Figure A.4: Map of Alaska showing the major coal basins and coal deposits by rank (where known). The grey
background is a shaded relief image where high elevation areas appear in darker grey tones. Map generated
by Christine Waigl using data available from Alaska Department of Natural Resources, this work.

A.2 Case Study from Interior Alaska

A.2.1 Introduction

The remote sensing based approach to coal fire hazard mapping is based on the hypothesis

that some areas persistently show slightly elevated temperatures (thermal anomalies) over time

(Kuenzer et al. 2007; Raju et al. 2013; Zhang et al. 2004). Should such high temperature areas

overlap or closely border on coal seams, coal rubble, or other surface deposits of combustible

carbon-rich materials, then there is an increased likelihood of coal fires starting through sponta-

neous combustion. Such areas should be mapped as hazardous areas, not only for coal fires but

also for related forest fires, and should be made a target for frequent monitoring during the fire

seasons. As remote sensing provides a synoptic overview of large areas, such hazard mapping

can be undertaken even for areas that are otherwise inaccessible and not well-mapped in the past

(Prakash and Vekerdy 2004).
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Figure A.5: Map of Alaska showing the major coal basins and coal deposit by rank (where known). The grey
background is a shaded relief image where high elevation areas appear in darker grey tones. Map generated
using data available from Alaska Department of Natural Resources.

The case study presented here is from a region in the dry boreal forests of interior Alaska,

within the central part of the Nenana coal basin, which is one of the three large coal basins in

the State of Alaska. Freely available Landsat satellite images acquired over a period of multiple

years have been processed to generate a coal fire hazard map, following a largely automated

work-flow that can form the basis for an operational protocol for large area hazard mapping in

high-latitudes, or in other cold-temperature regions such as the high-altitude coal fire prone areas

in China and Mongolia.

A.2.2 Study Area

The selected study area (Figure A.7) extends in latitude from 64.238°N to 63.795°N (~50km

north-south), and in longitude from 149.224°W to 147.810°W (~70 kmwest-east). Several coalfields

(cream-colored polygons in Figure A.7) lie within the Nenana coal basin that covers large parts

of the area under investigation. Usibelli Coal Mine Inc., the only active coal mine in the State,
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Figure A.6: A field photograph of the 2012 Windfall Mountain fire, east of the case study area. Carbonaceous
material (oil shale) is seen burning even in deep winter when the landscape is snow covered. Spruce trees in this
area are typically 6 – 10m tall. Several spruce trees burned during a previous fire. Burned and fallen trees are
visible on the snow-covered slopes in the fore-ground. The diagonal brown burn scar is approximately 300m
long. This and other photographs of the Windfall Mountain fire are available on the National Park Service
(NPS) photo gallery website (NPS 2012). Photo Credit: National Park Service / Ed Christensen, 2012.

is based in Healy and lies in the western part of the study area. One highway running north-

south through the town of Healy, and a few unpaved private roads are the only transportation

infrastructure available.

The terrain is generally rugged with mountainous areas ranging in elevation from approxi-

mately 500m to 1400m. The principal land cover is boreal forests with a predominance of black

spruce (Picea mariana). The boreal forests in interior Alaska experience frequent wildfires with

large variation between low and extreme fire years, burning at an average nearly 4000 km2 of for-

est area a year (Wendler et al. 2010). Wildfire is the predominant mechanism for renewal of forest
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Figure A.7: This map shows the extent of the study area (red rectangle) and its location within interior Alaska
(inset), as well as relief and hydrology of the area. The coal mining town of Healy is located in the western
part of the study area near the banks of the Nenana River. Coal fields within the Nenana coal basin are shown
in beige, and the expanse of the 2009 to 2011 wildfires are shown in pink.

stands in black spruce dominated boreal forests, with a fire recurrence interval of approximately

50 to 150 years (Chapin et al. 2006; Kasischke et al. 2002).

A.2.3 Data

The study is based on a wealth of data sets including many satellite images, digital elevation

model and its derivative products, geographic information system (GIS) compatible vector data,

and limited field observations.

40 royalty-free summer-time satellite images, acquired between 2006 and 2013 by the Landsat

series of satellites, were selected and downloaded from the USGS Earth Explorer web portal (2014)

and formed the main database for this study. This dataset excluded any image that had over

40% cloud cover, complete or near-complete snow cover, or extensive signature of smoke from
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wildfires. All the images were in the Universal Transverse Mercator (UTM) Zone 6N coordinate

reference system. Table A.1 summarizes the Landsat scene identification number, the respective

Landsat platform from which the image was acquired, the date of image acquisition, and the

native spatial resolution of the thermal infrared (TIR) image/band used for thermal anomaly

detection.

On average, five suitable Landsat scenes per year were available for the study. The Thematic

Mapper (TM), Enhanced Thematic Mapper (ETM+), and Operational Land Imager/Thermal In-

frared Scanner (OLI/TIRS) sensors available of Landsat 5, Landsat 7, and Landsat 8, respectively

scan the earth in the visible, near infrared, shortwave infrared and TIR wavelengths (USGS 2012).

While the visible through shortwave infrared bands have been used to classify the general land

cover andmask-out the cloud/snow areas, the TIR bands form themain data source for fire hazard

detection. The TIR sensors used in this study are Landsat 5 TM band 6 (10.40-12.50 µm; 120m spa-

tial resolution), high-gain dataset from Landsat 7 ETM+ (10.40-12.50 µm; 60m spatial resolution),

and Landsat 10 TIRS band 10 (10.60 - 11.19 µm; 100m spatial resolution) (see Table A.1). All TIR

images are resampled to 30m pixel-size by the data-provider, and data processing has followed at

this pixel size.

Six ASTER DEM tiles at a 1 arc second resolution, each spanning 1 by 1 degree of lati-

tude/longitude were downloaded from Alaska Mapped (2014) that is run by the Geographic In-

formation Network of Alaska (GINA 2014), mosaicked, reprojected to UTM zone 6N, resampled

to 30m pixel size, and clipped to the extents of the study area, to have a perfect overlap with the

Landsat images. Slope, aspect, and gradient images, standard derivative products from digital

elevation models, were generated and used as further input data to provide a geomorphological

context to thermal anomaly detection and fire hazard mapping. For this study all pixels were

forced to classify into north or south facing slopes, with zero slope pixels (flat areas) being com-

bined with the south facing slopes.

Vector files included point data for port and city locations (GNIS 2013), line data for trans-

portation network, coastlines, boundaries and hydrology (ASGDC 2014; Global Administrative

Areas 2014; GNIS 2013) and polygon data for coal basins and coal fields (Merritt and Hawley
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Table A.1: List of 40 Landsat scenes used to retrieve persistent thermal anomalies. Data available

from the U.S. Geological Survey. The scenes were downloaded from the USGS EarthExplorer web portal

(http://earthexplorer.usgs.gov/).

Landsat scene ID Date Satellite Original spatial resolution

of TIR band (resampled to 30 m)

LE70690152006206EDC02 2006-07-25 Landsat 7 60 m

LT50690152006246PAC01 2006-09-03 Landsat 5 120 m

LT50690152006262PAC01 2006-09-19 Landsat 5 120 m

LE70690152006286EDC00 2006-10-13 Landsat 7 60 m

LE70690152007145EDC00 2007-05-25 Landsat 7 60 m

LE70690152007209EDC00 2007-07-28 Landsat 7 60 m

LE70690152008132EDC00 2008-05-11 Landsat 7 60 m

LT50690152008172GLC00 2008-06-20 Landsat 5 120 m

LT50690152008236GLC00 2008-08-23 Landsat 5 120 m

LE70690152008244EDC00 2008-08-31 Landsat 7 60 m

LE70690152009134EDC00 2009-05-14 Landsat 7 60 m

LE70690152009166EDC00 2009-06-15 Landsat 7 60 m

LE70690152009182EDC00 2009-07-01 Landsat 7 60 m

LT50700152009197GLC00 2009-07-16 Landsat 5 120 m

LE70690152009198EDC00 2009-07-17 Landsat 7 60 m

LT50700152009229GLC00 2009-08-17 Landsat 5 120 m

LE70690152009246EDC00 2009-09-03 Landsat 7 60 m

LE70700152009285EDC00 2009-10-12 Landsat 7 60 m

LE70700152010256EDC00 2010-09-13 Landsat 7 60 m

LT50690152010257GLC00 2010-09-14 Landsat 5 120 m

LE70690152010265EDC00 2010-09-22 Landsat 7 60 m

LT50690152011132GLC00 2011-05-12 Landsat 5 120 m

LE70700152011147EDC00 2011-05-27 Landsat 7 60 m

LT50700152011187GLC00 2011-07-06 Landsat 5 120 m
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Table A.1 continued.

Landsat scene ID Date Satellite Original spatial resolution

of TIR band (resampled to 30 m)

LE70690152012175EDC00 2012-06-23 Landsat 7 60 m

LE70690152012191EDC00 2012-07-09 Landsat 7 60 m

LE70690152012207EDC00 2012-07-25 Landsat 7 60 m

LE70690152012223EDC00 2012-08-10 Landsat 7 60 m

LC80700152013144LGN00 2013-05-24 Landsat 8 100 m

LC80680152013146LGN00 2013-05-26 Landsat 8 100 m

LC80690152013153LGN00 2013-06-02 Landsat 8 100 m

LC80700152013160LGN00 2013-06-09 Landsat 8 100 m

LC80680152013162LGN00 2013-06-11 Landsat 8 100 m

LC80690152013169LGN00 2013-06-18 Landsat 8 100 m

LC80700152013176LGN00 2013-06-25 Landsat 8 100 m

LC80690152013185LGN00 2013-07-04 Landsat 8 100 m

LC80680152013194LGN00 2013-07-13 Landsat 8 100 m

LC80700152013224LGN00 2013-08-12 Landsat 8 100 m

LC80690152013233LGN00 2013-08-21 Landsat 8 100 m

LC80680152013258LGN00 2013-09-15 Landsat 8 100 m

1986). Additionally, wildfire start point and burn area perimeter information was retrieved from

the Alaska Interagency Coordination Center (AICC, 2014). Limited sightings of coal fire and for-

est fire locations were made by authors Waigl and Stuefer via overflights in summer 2013, and

also by colleagues from the National Park Service.

A.2.4 Data Processing

The purpose of the data processing was to identify persistent thermal anomalies in coal-rich

regions, and map them as proxies for coal fire hazards. The two-step process to achieve this in-

cluded: (i) thermal anomaly detection on an individual Landsat scene and (ii) persistent anomaly
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detection from a stack of processed images. Data processing was carried out using a combination

of command-line tools provided in the Geospatial Data Abstraction Library (GDAL Development

Team 2011) and custom-made scripts written by Waigl in Python using the Numpy, Scipy and

scikit-learn libraries (Oliphant 2007; Pedregosa et al. 2011). The coal fire hazard locations were

displayed on satellite images and the final maps were generated using open-source and commer-

cial GIS software packages such as QGIS and ArcGIS.

A.2.4.1 Thermal anomaly detection on an individual Landsat scene

Using the Landsat 7 image acquired on May 27, 2011 as an example, the data processing flow

for thermal anomaly detection on an individual image is further explained.

As a first step the Landsat image was clipped to match the study area extents and the TIR

bands were extracted and processed to retrieve temperature values. The rationale for tempera-

ture estimation as a first step in the processing chain was to be able to compare the results of

temperature statistics derived from the entire image scene with the temperature statistics from

a scene where obvious confounding error pixels were already removed, as discussed later in this

section. The digital numbers of the TIR bands were converted first to radiance and then to at-

satellite radiant temperatures measured in Kelvin as described in (Chander et al. 2009). As the

purpose of this study was not to derive accurate ground-surface temperatures (kinetic tempera-

tures as measured by a contact thermometer), but to detect areas that were relatively warmer than

the surrounding areas with similar landcover, further analysis was carried out using at-satellite

radiant temperatures as proxy for the LST.

Satellite images record response from several features such as clouds, shadow, snow/ice, active

fires and fire scars, and also from malfunctioning of the detectors themselves that impede the

identification of thermal anomalies (Figure A.8). Pixels that included signal from clouds and

active fire needed to be masked out to ensure that the digital values from such pixels did not

distort the overall image statistics for further analysis. Similarly, image pixels dominated by

snow/ice were removed from processing. The location of multi-year fire scars is of interest for

relating results to landscape surface features and burn history.
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Figure A.8: A subset of the selected 2011 Landsat image covering the study area. The image is a false color
composite (FCC) generated by displaying the shortwave infrared band in red, the near infrared band in green,
and the red band in blue. On this FCC healthy vegetation appears green and ice appears bright blue. Many
features pose a problem for coal fire hazard mapping. These include flaming fire (bright yellow and red points),
fires scars (shades of brown), clouds (white), shadows (dark patches close the white clouds), smoke (semi-
transparent light blue region) and missing data (black diagonal stripes) that are clearly visible on this image.

To proceed with the masking, a four band stack of visible, near infrared, and shortwave in-

frared images was classified using an LTK algorithm (Oreopoulos et al. 2011) into bare soil, water,

ice, cloud, vegetated ground, and no data classes (Figure A.9). Using this algorithm smoke from

the wild fires misclassified as clouds. This misclassification was advantageous. Clouds, smoke

and no data pixels could all be masked out from subsequent processing based on the LTK clas-

sification results. Furthermore, some shadow and cold bare soil surfaces were misclassified as

water, but not reliably enough to use this class to remove them. Thermal anomalies located in

cloud shadow areas would be unlikely to be identified in single scene, though for the identifi-

cation of persistent anomalies via an image stacking approach, transient cloud shadows are not

expected to introduce gross distortions.
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Figure A.9: Result of classifying the selected 2011 Landsat image using the LTK algorithm. This product
produces a very suitable mask for cloud and smoke.

Active fires and freshly burnt ground was masked using a threshold of -0.4 on a Normalized

Burn Ratio image. This widely used index (Key and Benson 2006) makes use of the fact that active

fires and charcoal return a strong signal in the shortwave infrared but a comparatively weak one

in the near infrared spectral region. (Figure A.10) shows a fully masked version of the example

Landsat image.

Next, the statistics of the derived radiant temperature distribution were plotted as a his-

togram, with the radiant temperatures on the x-axis and the probability distribution function

on the y-axis (Figure A.11). For a complete and systematic analysis, four separate histograms

were generated that showed the radiant temperature statistics for (a) the entire scene (all valid

data), (b) the entire scene after complete masking, (c) only north-facing pixels of the masked

scene, and (d) only south- facing pixels of the masked scene. The resulting distributions were

poorly approximated by normal distributions (blue curve). However, a Gaussian mixture model

combining two independent normal distributions (green curve) led to an excellent fit. This was
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Figure A.10: Selected 2011 Landsat image after masking out clouds, smoke, active fires, fresh burn scars, and
missing data pixels. Cloud shadow is not masked out, but its impact is minimized by the averaging influence
of the image stacking step in the processing chain.

the case for all 40 scenes of the study set. Pixels were identified as thermally anomalous (hotspots)

if their radiant temperature was more than 4 standard deviations above the mode of the dominant

normal distribution (T1 in Figure A.11). Positive thermal anomalies were identified and extracted

separately for both north facing and south facing slopes.

A.2.4.2 Persistent anomaly detection from a stack of processed images

All 40 image scenes were processed separately following the steps outlined in the previous

section. To declare a thermally anomalous pixel as persistent, it would have to be tracked on

multiple date images acquired over a period of time. Therefore, all processed image scenes were

stacked and an anomaly occurrence index was calculated for each anomalous pixel. The index

only took into consideration statistics if the pixel had valid data that was not masked out. For

example, an anomaly occurrence index of 0.5 meant that the pixel in question was anomalous in
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Figure A.11: Distribution of radiant temperature calculated from the thermal infrared band of the selected
2011 Landsat image for (a) the entire scene (all valid data), (b) the entire scene after complete masking, (c)
only north-facing pixels of the masked scene, and (d) only south-facing pixels of the masked scene. The left
tail of the (a) graph from the ’cold’ clouds disappears after cloud masking (b). Compared to (c), the graph
(d) is skewed to the right due to higher temperatures on the south facing slopes. A linear combination of two
Gaussians curves provides a much better fit (green) than a single Gaussian curve (blue).
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half of the scenes in which it was included. The distribution of anomaly occurrence indices of

the image stack was then plotted over the interval between 0 and 1, and by observing the fall-

off of the distribution, the threshold was set to 0.33, which implied that a pixel was counted as

persistently anomalous if it appeared in more than one third of the scenes in which it was present

as valid, non-masked data.

A.2.5 Results

Results of the histogram plot for the radiant temperatures from the entire scene (Figure A.11a)

showed a clear low peak to the left due to clouds, which are typically colder than the earth sur-

face. As expected, this peak disappeared after masking (Figure A.11 b). The distribution of radiant

temperatures retrieved from north facing slopes (Figure A.11c) was skewed towards lower tem-

peratures compared to the south facing slopes (Figure A.11d). This is a direct consequence of the

higher solar insolation received by the south facing slopes in the summer season.

Result of thermal anomaly detection on a single Landsat image is shown in Figure A.12. Ther-

mal anomalies are plotted in red and magenta, for pixels on south facing and north facing slopes,

respectively. It is clear that for this particular scene the thermal anomalies occur predominantly

within the perimeters of a large 2009 wildfire as well as the 2011 fire that was, at the time of

image acquisition, still ongoing. Whether these anomalies are transient or persistent can only be

assessed after stacking this result with information retrieved from other scenes over a period of

time.

Result of persistent anomaly detection from the complete set of 40 summer-time Landsat

scenes acquired between 2006 and 2013 (Table A.1) is shown in Figure A.13. The persistent

anomalies are a small fraction of the total number of thermal anomalies detected while inves-

tigating all individual scenes. The 2009 wildfire area still encompasses many of the persistent

anomalies, and would constitute the focal region for coal fire and forest fire hazards. In addition,

fire hazard clusters are identified within commercially developed mining zones (see Figure A.13,

inset images).
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Figure A.12: Thermal anomalies retrieved from the 2011 Landsat scene are shown in red (south facing slopes)
and magenta (north facing slope). Majority of the thermal anomalies are on the south facing slopes within the
boundaries of the fire scars. The 2011 fire area (central part of the image) experienced multiple small localized
fires in 2012 and 2013, likely due to the subsequent ignition of coal seams. The background image is a June
2013 Landsat scene.

A.2.6 Discussion

This study area includes several regions where a forest fire occurred in the recent past (see

pink regions in Figure A.7, and grey outlines in Figure A.12). The Rex Creek fire occurred in 2009

and was investigated by Prakash et al. (2011) who found that persistent “hotspots” existed on

the slopes of this region going as far back as 1999. They concluded that the Rex Creek fire was a

boreal forest fire started from a burning coal seam. Consistent with the earlier results, the present

study also shows the presence of several persistent thermal anomalies within the perimeter of

the Rex Creek fire.

The persistent thermal anomalies within the perimeter of the 2011 fire scar are in close prox-

imity to the starting points of a series of local fires that were associated with burning coal seams
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Figure A.13: Persistent thermal anomalies (red and magenta) delineated after stacking 40 processed Landsat
scenes between 2006 and 2013. The insets show areas where persistent anomalies appeared in close proximity
to active mines.

and appeared along the creek beds in 2012 and 2013 (Figure A.12, red and blue circles within

the 2011 fire perimeter). This result highlights the need to closely monitor fire scars for multiple

post-fire seasons, as these regions continue to pose a higher risk for new coal seam fires and

forest fires.

Another significant finding of this study is that despite the application of a lower threshold,

persistent thermal anomalies on north facing slopes are underrepresented by at least a factor

of 4. Some scenes do not contain any pixels classified as anomalous on north facing slopes.

This confirms the importance of differential solar heating on north and south facing slopes in

high-latitudes. The south facing slopes that are directly exposed to incoming solar radiation for a

longer duration warm up considerably more, raising their ambient LST and increasing the chance

of spontaneous combustion of exposed coal on these slopes.
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Persistent surface thermal anomalies due to the presence of underground heat sources and

remnant heat from fire scars, however, show up on both north and south facing slopes, regardless

of the differences in solar heating.

Of particular interest to resource development operations are hotspots in the vicinity of in-

frastructure and active mining zones such as those shown in the inset in Figure A.13.

The processing protocol followed in this study is largely automated and has the potential to be

implemented as an operational hazard mapping system. The only manual step is the selection of

a suitable threshold for the anomaly occurrence index. Should this processing protocol be applied

and tested on other high-latitude regions, there would be a larger research database to rely on,

that can possibly help to find a robust way to set the threshold for the anomaly occurrence index.

A.2.7 Conclusions

This study exemplifies that the long archive of free Landsat images offers an exceptional op-

portunity to map and monitor coal fire hazards in large coal bearing areas. The Landsat TIR

images contain valuable information on LST that can be used to retrieve thermal anomalies. By

stacking multiple datasets, the location of anomalies that persist for multiple months or years

can be detected. These locations should then receive heightened attention from fire monitoring

personnel.

Two main conclusions can be drawn by analyzing the thermal anomalies in conjunction with

information on terrain elevation and past fire history: (i) that the south facing slopes on rugged

terrain warm up considerably more than the north facing slopes, and pose a greater hazard for

spontaneous combustion of exposed coal, and (ii) past burn scars show a higher presence of

persistent thermal anomalies, which implies that the surface carbonaceous material here can

start or re-ignite a coal fire, which in turn can trigger another cycle of forest fire. Boreal forests

over the coal basins of interior Alaska are a model for such a scenario.

Data processing can be largely automated making it conceivable to design a long-term opera-

tional coal fire hazard monitoring systemwith only modest investments. Though such a mapping
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and monitoring system would be useful in any part of the world, it is particularly important for

vast, remote, infrastructure-poor regions of the world. Remote sensing based monitoring is the

only practical and economical solution for such areas.
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